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ABSTRACT 

Tuzov, Nikita V. Ph.D., Purdue University, May, 2009.  Mutual Fund Performance 
Evaluation Methodology and Local False Discovery Rate Approach.  Major 
Professor:  Frederi Viens. 
 
 
The history of applying statistical simultaneous inference methods to a financial 

problem of mutual fund performance evaluation is very short. A major problem in 

applying simultaneous inference methods is the non-trivial dependence among 

the utilized test statistics. When the number of tests is large, the explicit modeling 

of dependence structure becomes difficult. As a result, assumptions that are too 

restrictive are made, which can substantially bias the inference. In addition, the 

initial performance evaluation model itself can be misspecified and thus distort 

the results. For instance, the recent study of Barras, Scaillet and Wermers (2008) 

utilizes a multiple inference procedure with oversimplifying assumptions and, 

therefore, is prone to both sources of bias. 

 

Another under-investigated issue is the statistical power in a typical mutual fund 

study. The study of Kothari and Warner (2001) makes some progress but their 

research is not based on real mutual fund data. 

 

This paper catches up with the recent developments in Statistics by applying a 

state-of-the-art “empirical null hypothesis” concept combined with the” local false 

discovery rate” method, developed by Efron in 2001-2007.  That offers a viable 

alternative to the explicit modeling of high-dimensional dependence structure. In 

addition, the findings of Efron suggest that the new procedure may account for 

the performance evaluation model misspecification. The new method also 
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provides informative power measures and an elegant way of comparing the 

performance of mutual fund subgroups. 

 

A comprehensive investigation is performed for about 1900 actively managed US 

equity mutual funds observed monthly between 1993 and 2007. The results 

provide a significant extension to the findings of Barras et al. whose method can 

be seen as a restricted version of the method in this study. It is shown that the 

version of Barras et al. has both statistically and practically significant bias.  

 

We conclude that, unfortunately, Barras et al. are too optimistic about the 

performance of US mutual funds.  In addition, a detailed power analysis reveals 

that a typical mutual fund study with monthly dataset and multifactor performance 

evaluation model has a very low power. Even when outperformers are present in 

the sample, it usually requires too many years of data to single them out.
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CHAPTER 1. INTRODUCTION 

1.1. Objectives  

The studies of portfolio manager performance evaluation and, in particular, 

performance of mutual funds (later referred to as MF), go back as much as 40 

years. Over these years, a typical agenda for a MF performance study included 

the following steps:  

 

1) Selecting performance measure(s); 

2) Estimating performance for each MF individually; 

3) Interpreting the results. In the MF context, this usually involves an attempt 

to find association between the performance and fund characteristics such 

as the fund’s investment objective, its turnover, total net asset value 

(TNA), and so on. The persistence of performance (e.g., if past winners 

continue to win in the future) is also of interest. 

 

The issues 1)-3) have been addressed thoroughly by a large number of financial 

researchers. The development of more adequate performance measures and 

utilization of higher quality datasets can be traced through the works of Jensen 

(1968), Ippolito (1989), Elton et al. (1993), Hendricks et al. (1993), Ferson and 

Schadt (1996), Carhart (1997), Daniel et al. (1997), Chen et al. (2000), Wermers 

(2000) and many others. A discussion of recent results and an extensive 

reference list can be found in Nitzsche et al. (2006). 

 

The issue of simultaneous testing, on the other hand, has received significantly 

less attention. Its importance can be illustrated as follows: suppose that we want 
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to evaluate the performance of m  MF managers, of whom 0m  do not perform 

well. The performance is measured by a certain test statistic obtained from a 

performance evaluation model, e.g. Carhart alpha. The corresponding p-value 

under the null hypothesis of “no outperformance” is also provided. Testing each 

manager separately at the significance level α  one should expect to get 0mα  

“false discoveries”, i.e. the cases where the null hypothesis of “no 

outperformance” is rejected incorrectly. To distinguish between true and false 

discoveries, a multiple inference procedure has to be utilized.  

 

However, the application of any multiple inference procedure is far from 

straightforward when a large number of test statistics have a non-trivial 

dependence structure and /or the model used to obtain those statistics is 

misspecified in the first place. The most recent MF study of Barras, Scaillet and 

Wermers (2008) does employ a multiple inference procedure but hardly 

addresses either of the abovementioned issues. 

 

Yet another poorly explored but important question is the statistical power of the 

performance evaluation model. In a typical MF study, no power diagnostics are 

provided. The study of Kothari and Warner (2001) tries to shed some light on the 

issue but does not appear exhaustive, especially given that it is not based on the 

real MF data. 

 

The overall objective of this research is to address the questions of multiplicity 

and power through a method that accounts for the high-dimensional dependence 

structure of test statistics and a possible misspecification of the performance 

evaluation model. These real data features have to be taken into account without 

imposing oversimplifying assumptions. In that sense,  a new approach developed 

by Efron in 2001-2007 appears to be a viable option.  The original purpose of 

Efron’s method was to handle complex multiple testing problems of Statistical 

Biology. It has never been used for financial studies before, but, as shown below, 
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it allows us, at least to a certain extent, to address the issues of interest outlined 

above.   

1.2. Organization 

This dissertation has five chapters. This chapter (Chapter 1) provides a brief 

introduction and outlines the research objectives. Chapter 2 provides an 

overview of simultaneous inference techniques and their application to portfolio 

manager performance evaluation with the stress on assumption sensitivity and 

practical implementation issues. Chapter 3 describes the essence and 

advantages of Efron’s method. Chapter 4 looks into the performance evaluation 

of a large sample of US mutual funds from this new angle.  Chapter 5 

summarizes the findings and suggests further financial applications of Efron’s 

technique. 
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CHAPTER 2. SIMULTANEOUS INFERENCE AND ITS FINANCIAL 
APPLICATIONS 

2.1. Possible approaches to simultaneous inference 

Let us consider the following framework. Suppose we need to 

perform  m  hypothesis tests of the form: 

 

0                                       vs.    , 1, ;

0( ,  ) - a random vector of p-values corresponding 
                        to null and alternative hypotheses;

 - unknown number of nul0

aH H i m
i i

aP P P

m

=

=

l cases;

 - (random & unobserved) number of rejected true null hypotheses
       or "false discoveries"  

 - (random & unobserved) number of rejected non-true null hypotheses
V+S = R - (random & observe

V

S

d) number of all rejections
Q = V / max(R, 1) - proportion of rejected true nulls among all rejections

 

( 2.1.1)

 

The following quantities may be of interest: 

 

FDR = E[Q]  - expected value of Q called "False Discovery Rate"
PFER = E[V] - expected number of "false discoveries"
PCER = E[V]/ m - "Per Comparison Error Rate"
FWER = P{ V 1 } - "Family-Wise Error Rate≥ "
k-FWER = P{ V  k } - "k-Family-Wise Error Rate"≥

 

(2.1.2) 

 

Any approach, FDR, FWER, PCER or PFER can be used to perform 

simultaneous inference (Dudoit et al. (2003)), but the choice depends on a 
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articular application. In the realm of financial performance evaluation, a FWER 

(based on Bonferroni method) is used by Ferson and Schadt (1996).  

In the same context, Romano and Wolf (2005) and Romano et al. (2008) 

illustrate the control of FWER and k-FWER based on a number of methods, 

including their own StepM procedure. 

 

A typical part of a MF study is to try to construct an outperforming portfolio of MF. 

The portfolio has to consist of presumably outperforming mutual funds, but it is 

admissible to have a relatively small proportion of non-performing funds as long 

as the overall performance is good. Let us consider the choice among different 

quantities in (2.1.2) in this context. 

 

FWER usage is justified when a conclusion drawn from m  tests is erroneous as 

soon as one (or more) out of m  individual inferences is erroneous. Therefore, 

FWER is conservative and tends to have a low power, especially when m is 

large. In the abovementioned context, it is not crucial to require that every single 

one of the identified good performers is a genuine good performer. That rules out 

FWER as a tool of choice.  

 

Likewise, we are not interested in controlling the absolute number of false 

discoveries V  in terms of its average (PFER) or the probability that V exceeds a 

certain threshold (k-FWER).  PCER is more relevant, but the false discovery 

proportion, Q, has a direct interpretation as the proportion of useless funds in the 

outperforming portfolio, so it makes sense to control its expected value, FDR. 

Another meaningful alternative to FDR is to control not [ ]FDR E Q=  but a certain 

quantile of Q itself (Romano et al. (2008)), but here we intend to focus on FDR.  

 

The p-values in (2.1.1) can be derived from any particular MF performance 

evaluation model. Moreover, several models can be used simultaneously if, for 

instance, it is believed that different types of mutual funds should be evaluated 
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differently. For equity mutual funds, the four-factor Carhart (1997) performance 

evaluation model is as follows: 

, , , , , ,
1, ...                                                                    
1, ...

r b r s r h r m r
i t i i m t i smb t i hml t i mom t i t

t T

i m

α ε= + ⋅ + ⋅ + ⋅ + ⋅ +

=
=

 

(2.1.3) 

where ,i tr is the time period t  excess return over the risk-free rate for  

the MF number i ; ,m tr  is the excess return on the overall equity market portfolio; 

,, ,,  ,  mom tsmb t hml tr r r  are the returns on so-called factor portfolios for size, book-to-

market, and momentum factors (all can be obtained from CRSP database, see 

Appendix); ,i tε  is the residual error term. All returns are observed and the 

quantities iα , ib , is , ih , im  are estimated through multiple linear regression (see 

Section 4.1). 

 

The parameter iα  is measured in % per time period t  (usually one month) and 

its value shows by how much per one time period the fund outperforms ( 0iα > ) 

or underperforms ( 0iα < ) the benchmark model. Such funds will also be called 

“skilled” and “unskilled”, respectively.   

 

The m  p-values in (2.1.1) may correspond to one-sided hypotheses    

0 : 0  vs.  : 0aH H
i i i i

α α= >  (2.1.4) 

or two-sided hypotheses 

0 : 0  vs.  : 0aH H
i i i i

α α= ≠  (2.1.5) 

One-sided testing corresponds to identifying significantly good performers and 

two-sided testing corresponds to identifying significantly “non-zero” (both good 

and bad) performers. 
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In a recent series of working papers made public between 2005 and 2008, 

Barras, Scaillet and Wermers (later referred to as BSW) utilize FDR approach 

and four-factor Carhart model to estimate the performance of 2076 US equity 

mutual funds over the period 1975-2006. BSW paper will be the main reference 

point for our study. In another working paper, Cuthbertson et al. (2008B) borrows 

the method developed in BSW study to perform a similar analysis of UK mutual 

funds. Likewise, the very same method is used for German mutual funds by 

Otamendi et al. (2008). 

 

In order to extend BSW study, let us overview the assumptions underlying the 

FDR method and look into some issues pertaining to its practical implementation. 

2.2. Practical restrictions of FDR-based methods 

FDR method was properly introduced by Benjamini and Hochberg (1995) who 

produced the following result. 

Assumption 1. The components of vector 0P are independent and for any null 

p-value 0p   

0{ }    (0,1)P p u u u≤ ≤ ∀ ∈   

 

Theorem 1.  Specify a fixed value (0,1)q∈ . Under Assumption 1,
 

0[ ]
m

FDR E Q q q
m

= ≤ ≤  

(2.2.1) 

if all the hypotheses with p-values less thanγ  are rejected. The cutoff γ  is 

determined according to a certain data-driven stepwise procedure. It is also 

possible to solve an equivalent “inverse” problem: fix the test size γ  and 

determine the minimal q  such that (2.2.1) holds when all hypotheses with p-

values less thanγ  are rejected. 
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An immediate extension of Theorem 1 is to try to estimate 0m , the unknown 

number of null cases, in order to make the procedure more powerful. Benjamini 

and Hochberg (2000) proposed a method (extended in Benjamini et al. (2006)) 

that essentially relies on one more assumption: 

 

Assumption 2. The marginal distribution of each component  

                         of vector 0P  is U(0, 1). 

Thus, under Assumptions 1 and 2, the components of vector 0P are i.i.d. U(0,1)  

which is called “null distribution”. 

 

Then, consider the following subset of observed p-values, ,  1, }{ i i mp = : 

{ :    },  (0,1)p p p
i i

λ λλ = > ∈  
(2.2.2) 

For  λ large enough, pλ  will consist mostly of p-values corresponding to true 

nulls, i.e. the points in pλ  will approximately have ( ,  1)U λ  distribution. This fact 

can be used to estimate λ : e.g.,  in the histogram of p-values, the plot should 

“level off” to the right of a certain point on the horizontal axis, and that point is λ̂
. Then the estimate of 0m  is:

 

)ˆ1/()ˆin  points ofnumber (ˆ 0 λλ −= pm  (2.2.3) 

The spline estimator of Storey and Tibshirani (2003) and the bootstrap estimator 

of Storey, Taylor and Siegmund (2004) (the latter used in BSW) are based on the 

same two assumptions. Therefore, they may fail to work as soon as Assumption 

1 or Assumption 2 does not hold.   

 

If Assumption 2 does not hold (e.g., in the case of composite null hypothesis 

such as 0 : 0i iH α ≤  or a discrete distribution of p-values) the FDR control property 

(2.2.1) is still valid (Benjamini and Yekutieli (2001)). In that case, given that 0m  is 



 

 

9

close tom , one could just take 0m  = m  without having to estimate 0m  and that 

is not going to result in much power loss. Besides, Pounds and Cheng (2006) 

propose a way of estimating 0m  that works for discrete p-values and the 

composite null. 

 

If the independence requirement in Assumption 1 is violated, however, the FDR 

control property (2.2.1) is no longer valid. For that reason, much effort has been 

invested into adapting the FDR-based methods for the case of dependence 

among the components of 0P .  

 

Here we would like make a clarification as to the terminology used. For a 

multidimensional vector with m dependent components, the joint distribution is 

defined by a c.d.f. that maps mR  into [0; 1]. It can be simplified when the 

distribution is assumed in a certain parametric form, e.g. for a multivariate normal 

we only need to know the mean and variance-covariance matrix. Alternatively, 

one may believe that the mean and variance somehow deliver a good 

approximation to the true joint distribution which, strictly speaking, is not normal. 

For the purpose of multiple inference, it is fairy common to assume that it is 

enough to know the variance-covariance matrix of test statistics. In the 

subsequent analysis, we are going to use the terms “dependence structure”, 

“dependence”, “correlation structure”, “variance-covariance matrix”, “joint 

distribution” interchangeably.  For instance, in the case of Carhart model, the 

dependence structure of test statistics is determined by the m m× variance-

covariance matrix of error terms. Below we are going to look into a few previously 

used approaches to working with dependent tests statistics. 

 

The first and simplest way to do that is a straightforward modification of the 

original FDR procedure that works for any dependence structure (Benjamini and 
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Yekutieli (2001)). However, the corresponding power loss in a large-scale 

simultaneous testing situation is quite substantial.  

 

In the same study, they show that FDR procedure is still adequate if the vector 

0P  has so-called “positive dependency on each one from a subset” structure 

(PRDS). For instance, assume that the vector of test statistics is multivariate 

normal ( , )N μ Σ . Then, if each null statistic has a non-negative correlation with 

any other statistic, the joint distribution is PRDS. The verification of PRDS 

property is not a problem in some controlled experiments, where the design itself 

provides ways to simplify the dependence structure. For example, in clinical trials 

the researcher often has enough grounds to consider the subjects independent 

of each other. In fact, all examples of applied problems in Benjamini and Yekutieli 

(2001)are carefully designed experiments. On the other hand, MF study is an 

observational study where we have no luxury of simplifying the dependence 

through experimental design. Even if we are willing to assume that the joint 

distribution of test statistics is multivariate normal, the belief that each and every 

null statistic is non-negatively correlated with the rest (m - 1) statistics appears 

too restrictive. In addition, we cannot attain greater power by estimating 0m , 

since it is not clear how to do that when the statistics are PRDS-dependent. 

 

Another approach to dependency is to try to estimate the joint distribution of 

components of 0P  non-parametrically. In particular, in Yekutieli and Benjamini 

(1999) a bootstrap procedure generates m -dimensional samples of p-values 

under “complete null” setting, i.e. when all m  hypotheses are null. In MF 

performance evaluation context , Kosowski et al. (2006) introduce so-called 

“cross-sectional bootstrap”. Essentially, they estimate the joint distribution of 

more than two thousand 'i sα  via resampling under “complete null” (with T being 

about 300). The study of Cuthbertson et al. (2008A) borrows this approach to 

apply it to about 900 UK mutual funds (with T about 340).  
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In the realm of Econometrics, a similar resampling scheme was proposed in the 

well-known paper of White (2000), whose approach is developed in Romano and 

Wolf (2005) and Romano et al. (2007, 2008). The latter develop a procedure 

called StepM, which can be used to control FWER, FWER-k, FDR and even 

quantiles of False Discovery Proportion (denoted Q in (2.1.1)). Also, Romano et 

al. (2008) mention that the StepM procedure is similar to the approach developed 

for biostatistical purposes by van der Laan et al. in a number of papers, e.g. van 

der Laan and Hubbard (2005). 

 

At this point, non-parametric estimation of the dependence structure appears to 

be a fairly reasonable approach.  The only flaw of bootstrap approach is that MF 

time series are usually of different length, and that can render the estimated 

variance-covariance matrix  non-p.s.d. For instance, that can happen when we 

apply the bootstrap approach of White (2000). We shall say more about these 

methods in a few paragraphs. 

 

The third approach is to model the dependence structure parametrically. In case 

of a multifactor performance evaluation model such as that of Carhart, it implies 

proposing a few “residual factors” that presumably account for all or almost all of 

the cross-sectional dependence of error terms. The residual factors can be 

assigned based on common economical sense, e.g., one may assume that error 

terms coming from MF with the same investment objective are correlated with the 

same correlation coefficient. It is also possible to derive the residual factors from 

the data using one of many available “dimension reduction” techniques. Let us 

describe one of these methods called Principal Component Analysis (PCA), 

which is also closely related to so-called Ridge Regression and LASSO 

Regression. Suppose we observe the data matrix X of size m T× . For instance, 

under Carhart ‘s framework, X corresponds to the matrix of residual terms 

(assumed centered).  
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Then, the estimate of residual variance-covariance matrix is '1 XX=Σ . The 

estimate, 1Σ , is not of full rank because m T> . The purpose of PCA is to identify 

a relatively small number, p T< , of linear combinations of columns of X and use 

these combinations to approximate 1Σ . It can be shown (Hastie et al. (2001)) that 

the most useful linear combinations correspond to the eigenvectors (“principal 

components”) of 1Σ  that have the largest eigenvalues. The p most useful 

eigenvectors can be found from the eigen decomposition of 1Σ , and then they 

serve as an input to form the p “residual factors”. The factors are used to create 
2Σ , an approximation to 1Σ . A successful “dimension reduction” means that 2Σ is 

a good approximation to 1Σ with p being much less than T. 

 

For example, Jones and Shanken (2005) utilize a combination of “economically 

sensible” residual factors (that correspond to MF investment objectives) 

 and PCA-based residual factors. 

 

However, one should be aware that the residual correlation matrix in (2.1.3) is 

not constant over time. For instance, the correlation between two otherwise 

weakly correlated equity MF goes up during the so-called “flight-to-quality” 

periods. The following example, taken from Avellaneda and Lee (2008), 

illustrates the “flight-to-quality” effect. They take a large number of US stocks 

observed daily between October 2002 and February 2008. The return correlation 

matrix is computed based on 1 year (252 business days) rolling window. They 

perform PCA and estimate the number of principal components that are 

necessary to explain 55% of the variance in the system.  
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Figure 2..2.1 Market volatility index (blue) and the number of principal 
components (brown) required to capture 55% of total variance in US stock 

returns 

The blue ragged outline on Figure 2.2.1 shows the market volatility index (VIX) 

with distinct peaks corresponding to the burst of Internet bubble around 2002 and 

the subprime crisis of 2007-2008. The red curve shows the number of principal 

components that is necessary to capture 55% of total variance in the system. 

Apparently, during the “good times” of 2004-2006, the number of components is 

much higher (over 25) than it is during the “bad times” (between 7 and 15). 

 

The “flight-to-quality” suggests that, in a multifactor model with a fixed number of 

factors, the cross-sectional dependence structure of the residuals can change 

drastically over time. All other things being equal, the overall residual variance in 

(2.1.3) is a lot smaller during the “bad” times when all equities behave more or 

less alike. 
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For a MF dataset, our concern is that, even after dimension reduction, the 

number of factor in the model is still large compared to the number of 

observations. For instance, if we introduce the latent factors of Jones and 

Shanken (2005) into (2.1.3) we will end up having to estimate over 13 regression 

coefficients with an average number of observations equal to 129. Even if we 

assume that the dimension reduction is unbiased ( 2Σ is an unbiased estimator of  
1Σ ), the estimate, 2Σ , will still have a lot of variance. Consider also that the actual 

number of factors can be as large as 25 (Figure 2.2.1) and / or the loadings on 

residual factors are not constant over time (i.e., the residual correlation matrix is 

time-dependent). One may also take into account that, as mentioned in Section 

2.1, a few different performance evaluation models can be used simultaneously, 

which will significantly complicate the explicit modeling of the dependence 

structure. 

 

 

Figure 2.2.2 Estimation of the dependence structure for the purpose of multiple 
inference 

Figure 2.2.2 dispalys a general scheme for the estimation of the dependence 

structure. For instance, the bootstrap approach of White (2000) corresponds to 

using the “crude” estimate, 1Σ . Jones and Shanken (2005) take one more step, 
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dimension reduction, and obtain PCA-based 2Σ (even though they do not use it 

for the purpose of multiple testing). It is also possible to use Rigde Regression 

based )'(2 IXX ω+=Σ where I is the identity matrix and ω is a positive smoothing 

parameter. For PCA, the smoothing parameter is the number of retained principal 

components, p. 

 

Unfortunately, both parametric and non-parametric modeling of the dependence 

structure appear to have a fundamental problem: they only work when the 

utilized estimate, be it 1Σ or 2Σ , is a “good” estimate of the true variance-

covariance matrix, 0Σ . To put it in strict terms, the asymptotic results of  

Yekutieli and Benjamini (1999) and White (2000) state that the control of FDR is 

attained only asymptotically, for a fixed m and T → ∞ .  

 

To look into this in more detail, let us consider White (2000) whose non-

parametric approach is the foundation of so-called StepM procedure developed 

later by Romano and Wolf (2005) and Romano et al. (2008). White (2000) 

considers the following problem: suppose there are m forecasting strategies. For 

each strategy, its predictions are compared to those of a “naïve” strategy. The 

corresponding statistic is greater than zero when the “naïve” strategy is worse. 

For the best strategy (with the largest statistic), what is its p-value after 

multiplicity adjustment?  

 

Suppose the statistics are multivariate normal with a m m×  variance-covariance 

matrix Ω . Then we can get the desired p-value based on the distribution of the 

extreme value of m-dimensional (0, )N Ω  vector. Note that even for a givenΩ , the 

analytical expression for the distribution of extreme value is unknown. However, 

the proposed bootstrap procedure conveniently provides both Ω̂  and the cdf 

estimate for the extreme value. 
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This reasoning makes it perfectly clear that one assumes that there are enough 

data to obtain a good estimate of m m×  variance-covariance matrix Ω . All 

theoretical results are derived for a fixed number of tests and large sample size 

(m is fixed and T → ∞  in (2.1.3)), but in practice it is obvious that the “large 

enough” value of T depends on the value of m. In particular, it certainly makes 

little sense to rely on asymptotic results unless T is many times as large as m.  

Unfortunately, this crucial rule of thumb is obscured in practice because the 

bootstrap in StepM and similar procedures do not directly involve the estimation 

of variance-covariance matrix and, technically, can produce a result even when 

m is larger than T.  

 

Ths “size problem” by itself has received lots of attention. Fan et al. (2008) 

provide simulation results that demonstrate the inadequacy of a variance-

covariance matrix estimator when the data are insufficient.  Romano et al. (2008) 

admit  that the StepM procedure is similar to the approach developed in 

BioStatistics by Van der Laan et al. On the other hand, Efron (2006D, Section 6) 

refers to the work of van der Laan et al. to emphasize that the corresponding 

results are applicable only asymptotically and are of very limited use for a typical 

large-scale simultaneous inference problem.  

 

When the data are insufficient, the researcher often has no choice but to hope 

that, somehow, his estimate of the dependence structure is still not far from the 

truth. For instance, Yekutieli and Benjamini (1999) give a weather analysis 

example where  m = 1977 and T = 39. Remarkably, when they used another, 

simulated dataset to show that FDR is controlled they have to set m = 40 and T 

in between 200 and 1000. 

 

In the context of MF studies, we have m about 2000 and T between 100 and 300, 

which amounts to a severe “size problem”. Note that while the rank of 0Σ may be 

anywhere between 300 and 2000, the rank of 1Σ is always under 300. That is, we 
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know so little about 0Σ that we cannot even provide a reasonable estimate of its 

rank, let alone more delicate statistical properties such as PRDS. The various 

dimension reduction techniques allow us to “reduce the dimension” of the 

available data (i.e., use the available data efficiently), but they do not solve the 

“size problem”. 

 

Yet another way to handle the dependence is the assumption of “weak 

dependence” outlined in Storey, Taylor, and Siegmund (2004), Storey and 

Tibshirani (2003), and Storey (2003). When the assumption is satisfied, the  

p-values are treated as if independent and the (asymptotic) FDR control still 

takes place. 

 

Unfortunately, there is no statistical procedure to test for weak dependence, even 

though one could make a qualitative argument that it holds for particular 

datasets. For instance, it is likely to hold when the test statistics are dependent (if 

at all) within small groups with the groups being independent of each other. In 

particular, Storey and Tibshirani (2003) provide a qualitative argument for weak 

dependence assumption being true for some (but not all) microarray gene-

expression datasets: genes behave dependently in “pathways” (small groups) 

with pathways being independent of each other. To demonstrate FDR control, 

Storey, Taylor, and Siegmund (2004) give a simulated example with m  = 3000 

and the group size of 10.  They also show that under weak dependence FDR can 

be controlled for any fixed value of λ̂  in (2.2.3).  The choice of optimal λ̂  is a 

bias-variance tradeoff problem which they solve via bootstrapping from the m p-

values. Resampling from a set of (weakly) dependent p-values is a questionable 

technique and no analytical justification for that was ever developed; still, some 

numerical examples show that the bootstrap estimation of λ̂  is robust under 

“small group” type of weak dependence (Storey and Tibshirani (2001)).  
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Correspondingly, the application of FDR in BSW study rests on the assumption 

of weak dependence for the purpose of both FDR control and the estimation of 

the optimal λ̂  via bootstrap method. The same is true for the study of Otamendi 

et al. (2008), which is based on pFDR, a slight modification of FDR introduced in 

Storey (2002). 

 

At first sight, it seems reasonable for BSW to assume that MF operate in small 

independent groups and the dependence between the estimated performance 

measures ( ˆ 'i sα  in this case), if any, can exist only within a group. However, 

there are certain reservations to utilizing this convenient assumption.  As stated 

in BSW study itself, MF may exhibit correlated trading behaviors in large groups 

that can be caused, for instance, by being exposed to the same industrial sector 

or “herding” into particular stock(s). In the MF context, a natural candidate for a 

“small group” of funds is a fund family, with families being hopefully independent 

of each other. However, the findings of Wermers (1999) suggest that “herding” is 

not significantly less among different fund families than it is among funds within a 

family. While the absolute magnitude of “herding” is low, its qualitative nature 

shows that common sense-based qualitative assumptions w.r.t. the dependence 

structure may be not true at all.  

 

Note that the mutual independence of ˆ 'i sα  and their 'ip s  is in no way implied by 

the model (2.1.3) itself. When a multifactor asset pricing model is perfectly 

specified, the asset returns are not forecastable, meaning that the residual terms 

,i tε  are not serially correlated. In that case, ,i tε  can still be very well correlated 

cross-sectionally, i.e. across 1,i m=  for a fixed t  (see Cochrane (2005)). It 

means that in case of the perfectly specified and estimated model the null p-

values 'ip s  can marginally follow the pre-specified null distribution (e.g., U(0,1)) 

and be cross-sectionally correlated at the same time. 
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BSW put a sizable effort into justifying the weak dependence assumption for their 

study. First of all, BSW argue that the funds’ alphas are not very dependent 

because 15% of the fund histories in their sample do not overlap in time, and on 

average only 55% of return observations overlap. For funds i  and j , non-

overlapping of returns means that, given model (2.1.3), the estimates ˆ
iα  and ˆ

jα  

and the corresponding ,  i jp p  are not correlated (under another mute assumption 

that there is no serial correlation in error terms ,i tε  and ,j tε ). How much 

independence does the “lack of overlap” introduce? Compare this to an example 

of a weakly dependent structure with m=3000 and the group size of 10 in Storey, 

Taylor, and Siegmund (2004). If we translate it into MF setting with m=2000, 

where the degree of independence is associated with the absence of overlap, we 

obtain the following: the entire time period should be divided into subintervals 

with only 10 funds observed on each subinterval. Hence, it requires 200 

subintervals. Given that an average fund is observed for over 10 years, it implies 

the study’s time span has to be over 2000 years. In reality, BSW data span only 

32 years, which makes the “lack of overlap” argument doubtful. Besides, for a 

shorter time period (like in this study) the overlap has to be much greater than 

55% while the number of funds is about the same. In fact, our data span 14 ½ 

years with an average of 10 ¾ return-years per fund. 

 

BSW (05/2007 version) present two simulated examples to show that their 

multiple inference procedure works even when ˆ 'i sα  have a non-trivial (but pre-

specified) correlation structure. The first example is similar to the 

abovementioned weak / “small group” dependence simulation study of Storey 

and Tibshirani (2001). In particular, the simulated correlation matrix in BSW 

example has 30 non-zero blocks that comprise only about 5% of all elements in 

the correlation matrix. Therefore, it is not surprising that BSW multiple testing 

procedure (which ignores dependence) still produces reasonable multiple 

inference results. 
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The second example is based on the method of including the “residual factors” in 

the right-hand side of performance evaluation model (2.1.3) for the purpose of 

“whitening” the residual terms cross-sectionally. These factors in BSW are 

indicators of whether the fund has a zero, positive, or negative performance.  

 

Since the latent residual structure in BSW was simulated, there is no proof that 

the real structure is in any way close to it. Note that if we were to try to prove 

that, for instance, the correlation coefficients are the same within the same 

investment objective, we would have deal with a much larger-dimensional 

problem. When we test that all 'sα of 100 MF of the same investment objective 

are equal to the same constant (such as zero), we have to know the dependence 

structure for the corresponding vector of estimates, ˆ( ,  1,100)i iα = . It is usually 

approximated by 100 100× variance-covariance matrix. Now, suppose that we also 

want to test 

: ,   , 1,100  0H i j i j
ij

ρ ρ= = ≠  (2.2.4) 

where ijρ  is the correlation between ,i tε  and ,j tε  in (2.1.3) (it is assumed constant 

w.r.t. time). Similarly, (2.2.4) is a joint hypothesis test w.r.t. 4950 fixed 

parameters. In order to do it properly, one would have to be given a 4950 4950×  

variance-covariance matrix for the vector ,ˆ( ,  )i j i jρ ≠ . 

 

In yet another example, BSW (05/2008 version) actually try to estimate the 

residual variance-covariance matrix of size 898*898 based on 898 funds 

observed for 60 months (2002-2006) in order to use it for dependence sensitivity 

analysis. The rank of such cross-product matrix is 60 at most and it cannot 

provide a more or less good estimate of the variance-covariance matrix. It would 

have taken at least 898 months of data (almost 75 years) just to make the 

898*898 cross-product matrix non-singular. That can only be simplified via 

imposing some restrictions on the correlation structure which takes us back to 

the examples above. 
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For what it is worth, in that estimated matrix the pairwise correlation term has 

25%, 50% and 75% quantiles equal to –0.09, 0.05,  0.19 with the mean of 0.08 

(not too far from zero), which is another argument used in BSW to justify the 

weak dependence assumption. However, the seemingly close-to-zero range of 

pairwise correlation does not necessarily imply the weak dependence property. 

This particular issue will be considered in more detail in Section 3.2. 

 

Therefore, a large-scale MF study being a high-dimensional observational study, 

the weak dependence property inevitably implies some rather questionable 

and/or hard-to-check assumptions about the data dependence structure. Explicit 

modeling of the high-dimensional correlation structure is not feasible either , 

unless, yet again, one is willing to tolerate a number of probably unrealistic 

assumptions. Moreover, even fairly restrictive assumptions may not reduce the 

number of estimated parameters to the point where the amount of available data 

appears enough for estimation. 

 

There is one more source of error in a multiple inference procedure: even when 

independence or small-group dependence hold in theory, the multiple test 

procedure works with the estimated ˆ 'i sα  and 'ip s  . The estimated 'ip s  can 

correspond to null cases and at the same time they may deviate from the 

assumed null distribution. Efron (2006C) describes some “technical” causes of 

why that can happen in microarray studies. It is likely to take place when the 

model used to obtain the individual test statistics and p-values is misspecified 

and/or improperly estimated in some way. That can occur in MF studies just as 

well.  

 

Possible sources of misspecification in a model like (2.1.3) are: using an 

inappropriate correlation structure for the error terms; failing to account for the 

temporal heteroskedasticity of the error terms; applying asymptotically valid 

results when the sample size (T in 2.1.3) is not large enough. For instance, 
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omitting an important (but unknown) factor in the right-hand side of the model  

can induce the serial correlation of error terms which may remain unaccounted 

for. It is also likely to cause dependence in estimated performance measures 

across all funds that have significant loadings on the omitted factor (BSW). The 

number of such funds can be quite large. Applying robust estimation methods 

(e.g., non-parametric bootstrap) can take care of some of these problems, but 

such methods are not bulletproof.    

 

If any of these inconsistencies take place, they may result in the marginal 

distributions of null 'ip s  being far away from U(0,1). Even if such 'ip s  are 

independent, their ensemble is not going to behave like i.i.d. U(0, 1). In some 

cases, their behavior resembles that of dependent and marginally U(0, 1) 'ip s  

(see Section 3.2 for examples). Thus, as a result of model misspecification, even 

independent 'ip s  can be seen as dependent “in effect”. In practice, both 

“genuine” dependence and the misspecification of marginal distribution are likely 

to be present. While one can try to ignore the former via justifying the 

independence / weak dependence assumption, the contribution of the latter is 

impossible to assess a priori, at least in a large-scale situation. 

 

There is no argument that knowing the dependence structure of test statistics is 

sufficient to perform a multiple inference procedure. But what if it is not 

necessary? Given the “size problem” in MF studies, it would be very desirable to 

avoid the the modeling of high-dimensional dependence structure. The next 

section introduces a novel approach to large-scale simultaneous inference that 

can help us circumvent both the weak dependence assumption and the explicit 

modeling of high-dimensional correlation structure. 
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CHAPTER 3. LOCAL FALSE DISCOVERY RATE 

3.1. Local false discovery rate: definition and properties 

Suppose that for the model (2.1.3) we compute the individual one-sided p-values 

for the test:
 

0 : 0  vs.  : 0aH H
i i i i

α α= >  (3.1.1) 

The obtained p-values, { },  1,ip i m=  are converted to normal z-scores: 

 

1(1 )i iz p−= Φ −  (3.1.2) 

where 1(.)−Φ  is the inverse normal cdf.  For instance, ip  = 0.025 corresponds to 

the fund that is likely to outperform and its iz will be 1.96; if, on the other hand,  

ip  = 0.975 (obtained from a negative iα ) the fund is likely to underperform and 

its iz will be -1.96. 

 

Efron (2004) proposed the following structural model that ties together α  and z 

values:

 2
0

2
0

~ ( )
| ~ ( , )             

( ) ( ) *  (0, )

g

z N

f z g N

α α
α α σ

α σ=

 

(3.1.3) 

where ( )g α  is an arbitrary distribution and “ * ” denotes convolution. Our interest 

is in testing some hypothesis about α , and the support of ( )g α  can be arbitrarily 

split into two disjoint  “null” and “non-null” sets. Then, ( )g α  itself will be a sum of 

two terms: 
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0 0 1 1

0

1

0

1

0 1

( ) ( ) ( )

( ) "null" component          
( ) "non-null" component

{  is null} 

{  is non-null} 

1

g

g

g p g p g

where

g

g

p P

p P

p p

α α α

α
α

α
α

= +

−
−

=

=

+ =

 

(3.1.4) 

 In terms of corresponding z-values this will result in: 

2
0 0 0

2
1 1 0

0 0 1 1

( ) * (0, ) - null density of z's

( ) * (0, )  - non-null density of z's
( ) ( ) ( ) - mixture density of z's       

f z g N

f z g N

f z p f z p f z

σ
σ

=

=
= +

 

(3.1.5) 

For instance, the “null” set can consist of one point { 0}α =  ( ( )g α  does not have 

to be absolutely continuous) and the “non-null” set is the corresponding 

complement { 0}α ≠ . Also, 0 { 0}gp P α= =  and under 2
0 1σ =  the null subdensity 

0( )f z  is N(0,1). This particular case of the structural model corresponds to the 

setting from Section 2.2:  0p  is the same as 0 /m m  and if all null p-values are 

i.i.d. U(0,1), the corresponding null density 0( )f z  is  1( (0,1))U−Φ  which is nothing 

but N(0,1). 

 

Our inference will utilize the Bayesian concept of “local false discovery rate” (fdr) 

introduced in Efron (2001). It can be interpreted as a “local” version of Benjamini 

and Hochberg’s FDR and it is defined as follows:
 

0 0 ( )
( ) {case i is null | }

( )i

p f z
fdr z P z z

f z
= = =  

(3.1.6) 

Local fdr, ( )fdr z , is the posterior probability that the test with corresponding  z-

score came from the null distribution 0( )f z . One can also define
 

0 0( )( ) {case i is null | } ( )i
p F z

Fdr z P z z
F z

= ≤ =  
(3.1.7) 
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where 0F  and F  are cdf’s corresponding to 0f  and f . ( )Fdr z  is a closely 

related  Bayesian version of Benjamini and Hochberg’s FDR and the connection 

between the two is detailed in Efron(2002). Both Fdr and FDR are of tail-area 

type; in particular,

 ( ) ( )
( ) [ ( ) | ]

( )

z

z f

fdr t f t dt
Fdr z E fdr t t z

f t dt
−∞

−∞

= = ≤


 

(3.1.8) 

Thus, FDR and Fdr characterize the average false discovery rate within a tail 

region. On the other hand, fdr has a local nature and provides more precision in 

interpreting 'i sz on an individual basis which is an obvious advantage of fdr. 

 

The second advantage of this approach is that neither (3.1.6) nor (3.1.7) assume 

any particular dependence structure of z’s such as PRDS of Benjamini and 

Yekutieli (2001) or the weak dependence assumption of Storey, Taylor, and 

Siegmund (2004) and BSW.  

 

There are two ways that such flexibility is paid for: first, (3.1.6) is “one-at-a-time” 

statement: if we are given ( )fdr z  and then observe two dependent values 1z  and 

2z , 1( )fdr z  is not conditioned on 2z   and, if the probability structure of the entire 

vector Z


were known, then { case 1 is null | Z = z }P
 

 could be very different 

from 1( )fdr z  (Efron (2004)).  Therefore, local fdr method is appropriate for the 

applications where the entire probability structure is not only unknown but also 

quite unknowable (Efron (2005), Section 2). In the context of a large-scale MF 

study, the estimation of a high-dimensional dependence structure is severely 

hindered by the lack of data (Section 2.2) and that is the reason why the word 

“unknowable” seems to apply to it quite well. 
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Secondly, the local fdr approach is that of “empirical Bayes” kind: in (3.1.5) we do 

not pre-specify the mixture density f(z) (which is an advantage) because, unlike 

in the “classical Bayes” setting, f(z) is estimated from the data.  If the numerator 

in (3.1.6 – 3.1.7) is somehow pre-specified, all we need is a consistent estimator 

of f(z). This, however, adds a certain amount variability to our estimates of fdr(z) 

and Fdr(z). This is especially relevant for fdr(z) because in order to estimate f(z) 

properly one needs a large number of observations (at least a few hundred). 

 

Nevertheless, in certain cases it makes sense to estimate 0p  and 0(.)f  from the 

data also, which is the subject of the next section. 

3.2. Empirical null hypthesis 

Under standard FDR approach from Section 2.2, the null density 0(.)f  is pre-

specified as 2
0(0, 1)N σ = ) while the ratio 0 /m m  (equivalent of 0p )  is estimated 

from the data. Efron (2003, 2004, 2006C, D) introduced the concept of “empirical 

null” where 0( )f z is approximated by 2
0 0 )( ,  N δ σ  and the parameters 

0,
2

0 0 ,  p δ σ  are estimated from the data also. 

 

One may ask why not specify 0( )f z  a priori, e.g. 0( ) ~ (0,1)f z N  (“theoretical 

null”). To understand that, note that such 0( )f z  is based on Assumptions 1 and 

2 from Section 2.2, i.e. if the null p-values are i.i.d. U[0,1] then the corresponding 

z-scores are i.i.d. (0,1)N . As underlined in Section 2.2, either of these two 

assumptions can be violated. If the null p-values are not marginally U(0,1) 

because of model (2.1.3) misspecification, the corresponding z-scores will not 

behave like i.i.d. N(0,1) even if they are independent. In that case (under 

independence) we can see that by making 0σ a free parameter in (3.1.5), the 
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model accounts for the case when the marginal distribution of null z-scores is  

2
0(0, )N σ instead of  (0,1)N . 

 

On the other hand, if the null p-values are marginally uniform (model (2.1.3) is 

well specified) but dependent, the corresponding z-scores will not behave like 

i.i.d. N(0,1) either. In practice, both of these forces are likely to be at work and, as 

a result, the histogram of null z-scores can be quite different from that of (0,1)N  

distribution.  

 

Efron (2006D) provides an explicit example of how the correlation structure can 

affect the inference. Suppose that z’s are marginally N(0,1) , that is, all z’s are 

null. Each pair ( , )i jz z  is bivariate normal with a distinct correlation coefficient ijρ  

drawn randomly from a certain normal distribution 2(0, )N τ .  Further, let A  be a 

single independent realization (called “dispersion variate”) from 2(0, )N τ .  It can 

be shown that the ensemble of all z-values will behave closely to an ensemble of 

i.i.d. 2
0(0, )N σ  where 2

0 1 2Aσ = + . The positive realizations of A  produce 2
0 1σ >  

(“overdispersion”) and the negative realizations of A  produce 2
0 1σ <  

(“underdispersion”).   

 

On the other hand, the ensemble of i.i.d. 2
0(0, )N σ  can be seen as a family of 

independent z-values coming from a misspecified performance evaluation model 

that produces null z’s that are marginally 2
0(0, )N σ  instead of (0,1)N . The result 

above implies that such z’s can be treated as marginally N(0,1) and dependent 

with the correlation density 2~ (0,  )Nρ τ . 

 

Efron (2006C) showed that, in this example, not only the point estimate of fdr(z) 

but also its estimated standard error, ˆ. .( ( ))s e fdr z , are conditioned on the ancillary 
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statistic A, and, in that sense, are conditioned on the dependence structure of 

z’s. Likewise, the standard errors of 0 0 0
ˆˆ ˆ, ,p δ σ  are also conditioned on the 

dependence structure. 

In this example, using the empirical null is essentially a way to adjust the 

inference for the dependence structure of z’s without having to model it explicitly. 

In addition, the empirical null takes into account the possible misspecification of 

the marginal distribution of null p-values. If there is strong evidence against the 

theoretical null, the empirical null has to be considered. Note that the usage of 

empirical null increases the variability of the estimates of fdr(z) and Fdr(z), and 

whether or not it is worth using is a bias-variance tradeoff question. 

 

Based on model (2.1.3), one could roughly estimate the density of ρ  based on 

the empirical distribution of pairwise correlations in the residual variance-

covariance matrix. BSW estimated the 898*898 cross-product matrix and  found 

the estimated 25%, 50% and 75% quantiles for ρ  are equal to  

–0.09; 0.05; 0.19, correspondingly.  Since each pairwise correlation was based 

on only 60 observations, the sampling error must have added some variability 

(see Efron (2006D, Remark A)). For the sake of argument, suppose that the 

three quantiles of true ρ  are -0.09; 0.0; 0.09 and ρ is normal, which 

implies 2 2ˆ~ (0,   = 0.133 )Nρ τ . 

 

To see how this can affect the inference, we introduce another version of (3.1.7): 
 

 ( | ) {  null | ,  }i iFdr x A P z z x A= ≥  (3.2.1) 

Thus, ( | 0)Fdr x  corresponds to the inference made under z’s being independent, 

i.e. under the theoretical null. Suppose we are interested in detecting the positive 

performers, so set x = 2.5. The following plot shows the ratio of ( 2.5 | )Fdr x A=  to 

( 2.5 | 0)Fdr x =  as a function of A . 
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Figure 3.2.1 The ratio of Fdr(x | A) to Fdr(x | 0) as a function of A 

For instance, if A took on the value of 0.16 (just 1.2 standard deviations from the 

mean of zero), the proportion of null z’s in the tail region { 2.5}z >  is about 1.8 

times as great as it is under A = 0 (theoretical null). Suppose (2.5 | 0)Fdr  is 0.2, 

then (2.5 | 0.16)Fdr  is 0.36. If 100 of z’s fall above 2.5, 80 of them are “true 

discoveries” under the theoretical null, but under A = 0.16 the number of true 

discoveries is only 64.  

 

If A = -0.16 then the proportion of null z’s in the tail region { 2.5}z >  is five times 

less than that number under the theoretical null. In the example above,  

(2.5 | 0.16)Fdr −  = 0.04 and 96 out of 100 z’s above 2.5 are true discoveries as 

opposed to only 80 under the theoretical null. 
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This illustrates that even a seemingly close-to-zero range of ρ  can substantially 

bias the inference. If one chooses to use the theoretical null 0(.) (0,1)f N=  for  

overdispersed z’s, too many null cases will be declared significant. On the other 

hand, using the theoretical null for underdispersed z’s will ignore a lot of non-null 

cases. Apparently, the inference has to be adjusted for the estimated value of A.  

It is achieved through using the empirical null 2
0(0, )N σ  where 2

0 1 2Aσ = + . For 

this example, the empirical nulls are 2
0(0, 1.226)N σ =  and 2

0(0, 0.774)N σ =  for  

A = 0.16 and A = -0.16, correspondingly.  

 

The advantage of the empirical approach can be summarized as follows: what 

we really need to know to be able to perform multiple inference is not the 

dependence structure per se, but the null component, 0 0( )p f z . When we estimate 

the dependence structure explicitly, it is not immediately clear whether our 

method of modeling is adequate for the purpose of multiple testing. When the 

“size problem” (Section 2.2) is present, we know very little about the true 

dependence structure and it is hard to verify the weak dependence / 

independence assumption for test statistics. On the other hand, 0 0( )p f z  is 

described by a small number of parameters that, by construction, are of direct 

relevance to our goal. Therefore, modeling 0 0( )p f z  directly is a logical short-cut 

one may choose when the data allow for that. If the number of tests is large, we 

can obtain the information about 0 0( )p f z  directly from the observed z-scores. In 

that sense, the parameters of empirical null do capture the main effect relevant to 

our ultimate goal, multiple inference (see Efron (2006C, D)).  

 

Note that, as the number of tests, m,  goes up, the performance of “explicit” 

approach deteriorates because the “size problem” (Section 2.2) becomes more 

severe.  With the “empirical” approach, it is just the opposite: the larger m, the 

more precise is the estimation of 0 0( )p f z . 
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While the theoretical null is always the first option to try, the abovementioned 

findings of Efron suggest that it is also worth checking whether there is strong 

evidence against the theoretical null. If that is the case, switching to the empirical 

null can be a justifiable option. 

3.3. Parameter estimation 

The numerical results in this study are obtained based on the R package locfdr 

which implements the fdr-based method of Efron. 

 

Regardless of whether the empirical or theoretical null is used, the estimation of 

the parameters of null component, 0 0( )p f z , is based the “zero assumption”: it is 

assumed that only the null component is supported on a certain “zero interval” 

( ;  )z z− + . The parameters of interest are estimated with either MLE or so-called 

central matching (CME) (Efron (2006C)). The interval ( ,  1)U λ  from Section 2.2 

corresponds to a symmetrical zero interval: e.g., U(0.05; 1) corresponds to the 

zero interval (-1.96; 1.96) . The following formula shows the relation between λ  

from (2.2.2), z−  and z+ :

 ( ) (1 ( ))
(.) - standard normal cdf

z zλ − += Φ + − Φ
Φ

 
(3.3.1) 

For the theoretical null and a fixed zero interval, the point estimate of 0p  is the 

same in BSW method (formula (2.2.3)) and Efron’s approach. If the empirical null 

is chosen, 0( )f z  can be approximated by a parametric distribution, such as 

symmetrical normal 2
0 0 )( ,  N δ σ  or skewed split-normal 2 2

0 1 2( , , )SN δ σ σ . Fitting a 

heavy-tailed null distribution may be problematic in the sense that in order to fit 

the tail, one would have to expand the zero interval to the point where too many 

non-null z-values are included. 
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An additional restriction 0 0.9p ≥  has to hold when we use the empirical null. 

Efron (2003) provides theoretical and numerical results that justify the restriction: 

if 0 0.9p ≥  and the theoretical null is valid, then the MLE/CME estimates of 0δ  

and 0σ  have to be very close to 0 and 1, respectively. If they are not, it implies 

that the theoretical null is inadequate. If 0 0.9p <  then the estimates of 0 0( , )δ σ    

can be significantly different from (0, 1) even when the theoretical null is valid. 

Hence, if one wants to distinguish between the two types of nulls, first he has to 

make sure that 0 0.9p ≥ .  

 

The choice of the zero interval itself is a bias-variance tradeoff problem: for a 

large interval, the estimate of 0p  (and, if applicable, the parameters of the 

empirical null) have low variance but a high bias since many non-null cases are 

likely to fall into the wide zero interval. For a narrow zero interval, the bias is 

small, but the estimates of 0p  and other parameters have large variance. The 

value of λ  or the boundaries of ( ;  )z z− +  are the corresponding smoothing 

parameters. BSW minimize 0ˆ( )MSE p  using λ  as a smoothing parameter.  For a 

fixed λ , 0ˆ( )MSE p  is calculated based on rather questionable bootstrap 

technique (see Section 2.2)  and we are not going to use it for this study. 

 

Instead, consider the error of 0 0̂ˆ ( )p f z  scaled by 1/ ( )f z :

 
0 0 0 0

1 ˆˆ( ) ( ) ( )
( )

Error z p f z p f z
f z

 = −   
(3.3.2) 

The optimal zero interval is where the integrated ( ( ))MSE Error z is at the 

minimum, so we have to estimate the squared bias and variance. The locfdr 

package does not provide a direct estimate of  ( ( ))MSE Error z  , and we are going 

to use some proxies to obtain the shape of bias-variance tradeoff curve.    
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First, we use the bias on the zero interval as a proxy for overall bias. On the zero 

interval we have 

0 0

0 0
0 0 0 0

                                ( ) ( )
ˆˆ ( )1 ˆˆ( ) ( ) ( ) 1

( ) ( )

p f z f z

p f z
Error z p f z p f z

f z f z

=

 = − = − 
 

(3.3.3) 

The mixture density ( )f z  is unknown, but the expected error can be estimated 

by using an unbiased estimator of ( )f z  which is obtained in locfdr via Poisson 

regression over the entire z axis. The estimator, ˆ ( )f z , is consistent even when z-

scores are dependent (see Efron (2004, 2005)). The locfdr package also 

produces the estimates ˆ ( )fdr z  and ˆ[log( ( ))]Var fdr z . 

   

As a result, the estimate of average squared bias is:

 
2 21 ˆˆ (1 ( ))

z

z

Bias fdr z dz
z zλ

+

−+ −

= −
−   

(3.3.4) 

The error variance at point z will be 
ˆ[ ( )] [ ( )]Var Error z Var fdr z=  (3.3.5) 

We are going to use the available ˆ[log( ( ))]Var fdr z  instead and then get the 

estimate of overall variance as:
 

ˆˆ [log( ( ))]Var Var fdr z dzλ
∞= −∞  (3.3.6) 

For the theoretical null, 0( )f z  is not estimated. ˆ( ( ))Var f z  does not depend on λ  

and its magnitude is much larger than that of 0ˆ( (0,1))Var p N⋅ . For that reason, we 

are going to use 0ˆ( )Var pλ  instead of (3.3.6) for the theoretical null. 

 

For the empirical null, we are using the full version (3.3.6). In that case, locfdr 

produces ˆ[log( ( ))]Var fdr z  where both numerator and denominator of 0 0̂ˆ ( )
ˆ ( )
p f z

f z
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are considered random and ˆ ( )f z  can be seen as a random weight function. For 

the empirical null, the numerator strongly dominates the denominator and  ˆVarλ  is 

proportional to 

0 0̂ˆ( ( ))Var p f z dz
∞

−∞

⋅  
(3.3.7) 

Because ˆVarλ  and 2ˆBiasλ  are not on the same scale, we divide each estimate by 

its median over the range of the smoothing parameter to get the value of bias-

variance tradeoff, BVTλ : 

2

2
' ' ' '( ) ( )

Var Bias
BVT

median Var median Bias
λ λ

λ
λ λ λ λ

= +  
(3.3.8) 

BVTλ  is not equal to the equal to the integrated  ( ( ))MSE Error z , but it estimates 

the shape of MSE curve (see Storey and Tibshirani (2001)).The optimal  value of 

λ  is determined by minimizing BVTλ   over the range of λ .  An alternative zero 

interval choice procedure based on 0 0̂ˆ( ( ))MSE p f z  is developed in Turnbull (2007) 

but the corresponding software is not publicly available. 

 

Let us return to the example from Section 3.2 where marginally (0,1)N   z-values 

are correlated with the correlation density 2~ (0,  )Nρ τ . In that case, if empirical 

null is used, the ˆ ( )fdr z  and ˆ[log( ( ))]Var fdr z  are adjusted for the dependence 

among z’s in the sense that both estimates are conditioned on the value of 

dispersion variate A  (Efron(2006C)).  In that sense, these estimates are more 

adequate than the bootstrap estimate of variance used in BSW. However, if the 

theoretical null is used, the variance estimator, strictly speaking, works only 

under the independent z’s which makes it akin to the bootstrap estimator of 

BSW. 
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Efron’s method and locfdr package do not distinguish between significant z-

values that are positive and significant z-values that are negative. For MF study, 

it is necessary to make that distinction because we need to separate 

outperformers from underperformers. Suppose all p-values are converted to 

corresponding z-scores via (3.1.2). The structural model (3.1.3 – 3.1.5) can be 

slightly modified as follows: 

2
0

0 0 1 1 1 1

0 1 1

0

1

~ (.)
| ~ ( , )       

( ) (0) ( ) ( )

{  =0},   {  > 0},   {  < 0} 

( ) "zero" density equal to delta function

( ) "positive" density with support on {  > 0

g g g

g

z N

g p g p g p g

where

p P p P p P

g

g

α
α α σ
α α α

α α α
α
α α

+ + − −

+ −

+

= + +

= = =

−

−

1

}

( ) "negative" density with support on {  < 0}g α α− −

 

(3.3.9) 

In terms of z-values, we have 

0 0 1 1

1 1 1 1 1 1

2
0 0

2
1 1 0

1

( ) ( ) ( )      - mixture density of z's     

( ) ( ) ( )

( ) (0, )                - "zero" density of z's

( ) * (0, )       - "positive" density of z's 

(

f z p f z p f z

p f z p f z p f z

where

f z N

f z g N

f z

σ
σ

+ + − −

+ +

−

= +

= +

=

=
2

1 0

1 1 1 0 1

) * (0, )       - "negative" density of z's     

,    1

g N

p p p p p

σ−

+ −

=

+ = + =

 

(3.3.10) 

The  locfdr  package produces the estimate of 1 1( )p f z , but its decomposition into 

positive 1 1 ( )p f z+ +  and negative 1 1 ( )p f z− −  components is not identified. However, 

note that 1 ( )f z−  is a (possibly continuous) mixture of normal densities
 

2
1 1 0( ) ( )* (0, ),   <0f z g Nα σ α− −=  (3.3.11) 

All normal densities in the mixture have negative means. Hence, 1 ( )f z−  is non-

increasing for  z > 0. Typically, the estimation produces 0 0̂ˆ ( )ˆ ( ) 1ˆ ( )
p f z

fdr z
f z

= =  in 
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some interval ( ; )l l−  such as (-0.4; 0.4).  It implies that 1̂( )f z ,  1̂ ( )f z−  and 1̂ ( )f z+  

are equal to zero on ( ; )l l− . Hence, 1̂ ( )f z−  cannot have support for z l>  and 

1̂ ( ) 0 0f z z− = ∀ > . Similarly, 1̂ ( ) 0 0f z z+ = ∀ < .   

 

Therefore, while in theory some 0α <  can produce z > 0, the practical estimation 

procedure implies that z > 0 can be produced only by 0α ≥  and  z < 0 can only 

be produced by 0α ≤ . Then, for z > 0 we may formally define “positive” fdr as

 
0 0 1 1( ) ( )( )

( )
p f z p f z

fdr z
f z

− −

+
+=  

(3.3.12) 

but since 1 ( ) 0 0f z z− = ∀ > , ( )fdr z+  will be the same as ˆ ( )fdr z  produced by locfdr 

package. 

Then, the value of 1p
+  is estimated as follows: 

0
1

1

0

ˆ[1 ( )]
ˆ ˆ ( )

ˆ ( )

fdr z dz

p
f z

dz
f z

∞

+
∞ +

−
=



 

(3.3.13) 

and similarly for 1p̂
− , where integrals are computed as corresponding sums.  

 

For two-component model, 0 1ˆ ˆ. .( ) . .( )s e p s e p= , but as of now we don’t have a way 

to get 1ˆ. .( )s e p+  and 1ˆ. .( )s e p− . Let us assume that 
 

1 1 1 1ˆ ˆ ˆ ˆ. .( ) . .( )     and  ( , ) 0s e p s e p corr p pκ+ − + −= = ≤  (3.3.14) 

then  

2
0 0ˆ ˆ[ ] 2 . .( ) / 2Var p s e pκ κ≤  ≥  (3.3.15) 

Unless stated otherwise, the lower bound for κ  will be reported instead of 

1ˆ. .( )s e p+  and 1ˆ. .( )s e p−  whenever the three-component model (3.3.10) is used. 
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CHAPTER 4. US MUTUAL FUND PERFORMANCE EVALUATION 

4.1. Data description and previous results 

This study is focused on actively managed US equity MF. The first dataset 

consists of 1911 open-end, actively managed US equity MF selected from the 

CRSP mutual fund database. The monthly dataset covers 01/1993 –06/2007, 

inclusive. In this dataset, MF returns are net of management expenses, 

marketing fees, administration, and trading costs. The second dataset is obtained 

from the first one, with the original returns converted to “pre-expense” returns 

that are net of trading costs only. Because of the missing expense information, 

the second dataset includes 1876 funds. In every case, each MF has at least 50 

monthly observations. The Appendix describes both samples in detail. 

 

In reality, the managers are not going to work for free, but pre-expense analysis 

can still be useful. First, it is definitely an interesting theoretical question whether 

skilled stock pickers exist in principle, regardless of how much it costs to employ 

them. Second, if the good performers could be singled out, one could do some 

further analysis to see whether they earn more than their fees. This is especially 

relevant to institutional investors such as funds of funds because the MF fees for 

institutional investors are understandably lower than for individual investors. 

Besides, institutional investors can try to negotiate and lower the fees. Finally, 

another institution such as an equity hedge fund may be interested in obtaining a 

list of talented MF managers for the purpose of offering them a position. In that 

case, the fees charged by the corresponding MF are irrelevant. 
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The monthly factor returns (see Carhart (1997)) were obtained from the same 

CRSP database. The composition of sample (except for the time span) and the 

performance evaluation model correspond to BSW study that evaluates 2076 US 

equity mutual funds over the period 1975-2006; there has to be a significant 

overlap between the BSW sample after 1992 and the sample in this study. 

 

The performance evaluation model is the four-factor Carhart model (2.1.3). BSW 

(10/2006) and Kosowski et al. (2006) consider a large number of possible 

extensions to the Carhart model that include time-dependent regression 

coefficients, serial correlation in error terms, and heteroskedasticity. They also 

apply time series bootstrap estimation. They report that none of these produce a 

significant change in results, and in the end focus on the Carhart model where 

regression coefficients are considered constant and error terms are considered 

serially uncorrelated. The model is estimated through a bootstrap procedure that, 

as shown in Kosowski et al. (2006), provides more adequate estimates. A similar 

approach is utilized in our study. 

 

BSW (05/2008) estimated the proportions of funds with zero, positive and 

negativeα , according to the model (2.1.3). For the entire period 1975-2006, they 

obtained the following results based on net returns of 2076 funds and pre-

expense returns of 1836 funds: 
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Table 4.1.1 Summary of Barras et al. (05/2008) results 

    Proportion, %   

  Zero Positive Negative 

        

Pre-expense returns 85.9 (2.7) 9.6 (1.5) 4.5 (1.0) 

95% CI (80.61; 91.19) (6.66; 12.54) (2.54; 6.46) 

Number of funds 1577 83 176 

        

Net returns 75.4 (2.5) 0.6 (0.8) 24.0 (2.3) 

95% CI (70.5; 80.3) (-0.97; 2.17) (19.49; 28.51)

Number of funds 1565 12 499 

        

 

BSW also found that for both net returns and pre-expense returns, the positive 

(skilled) proportion declined significantly and in a nearly monotone fashion 

between 1989 and 2006. Therefore, we expect the corresponding estimates for 

1993-2007 period to be less than those in Table 4.1.1. 

4.2. Pre-expense returns, Theoretical null 

After the estimation of the Carhart model, the obtained p-values are converted to 

corresponding z-scores via (3.1.2). The next step is to estimate the structural 

model (3.3.9)-(3.3.10).  

 

As mentioned in Section 2.2, BSW employ the theoretical null U(0,1) for two-

sided null p-values (2.1.5). It is equivalent to 2
0(0, 1)N σ = for null z-scores (3.1.2). 

It is also possible to use the theoretical null in locfdr package which we will do 

first.  

 

Let us start with pre-expense ' sα obtained from 1876 funds.  Figure 4.2.1 shows 

the histogram of z-scores (y axis shows the counts of z-scores in each of 90 

bins), the Poisson regression estimate of mixture density, ( )f z , (green curve) 
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and the estimated null component, 0ˆ (0,1)p N⋅ , (blue dashed curve). The estimate 

0p̂  is equal to 0.8942 or 89.42%. 

Figure 4.2.1 Estimated mixture density (green) and its null component (blue 
dashed) for pre-expense returns and theoretical null 

 

The pink dashes in Figure 4.2.1 are so-called “thinned counts” that are equal to 

observed z counts times the estimated non-null component 1 1̂ˆ ( )p f z .  
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Table 4.2.1 summarizes the findings: 

Table 4.2.1 Performance evaluation summary for pre-expense returns and 
theoretical null 

  p0, % p1+, % p1-, % 
  89.42 (0.75) 6.30 (0.53) 4.28 (0.53) 

95% CI (87.95; 90.89) (5.26; 7.33) (3.24; 5.31) 
Number of funds 1678 118 80 

        
Zero interval (-1.5; 1.5)     

Lambda 0.1336     
 

The optimal zero interval (-1.5; 1.5) corresponds to using 0.1336λ =  in (2.2.3).  

It means that all z-values in (-1.5; 1.5) are considered to be i.i.d. from the 

theoretical null distribution N(0, 1). Equivalently, all two-sided p-values greater 

than 0.1336 are considered to be i.i.d. from U(0, 1).  

 

We see that the confidence intervals for 0 1 1, ,p p p+ −  in Table 4.2.1 have a lot of 

intersection with corresponding intervals in Table 4.1.1, even though the 

bootstrap procedure of BSW is dropped (Section 3.3). Secondly, the precision 

became considerably greater: in Table 4.1.1, the 0ˆ. .( )s e p  is 2.7% whereas in 

Table 4.2.1 it is 0.75% (smaller by a factor of 3.6), which can make a practical 

difference because the point estimate of 1p  is not very large. The estimate of 

positive proportion drops from 9.6% in Table 4.1.1 to 6.3% in Table 4.2.1, 

possibly because of historical deterioration of MF performance mentioned in 

Section 4.1. Still, the proportion of positive performers is both practically and 

statistically significant.  

 

The results of Table 4.2.1 suggest that some 118 money managers out of 1876 

are outperforming on pre-expense basis. Unfortunately, knowing that some 118 

funds are worth looking into is not the same as knowing those 118 skilled funds 
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by name.  In order to single them out and, at the same time, avoid the useless 

false discoveries, one can try to select only the funds that fall in the bins where 

( )fdr z  is small, e.g. under 0.2 (see Efron (2006C)).  The yellow triangles on 

Figure 4.2.1 mark these cutoffs. The funds to the right of the right triangle can be 

identified as skilled (outperforming) and the funds to the left of the left triangle 

can be identified as unskilled (underperforming). From the distribution of the 

thinned counts it becomes immediately clear that the majority of skilled and 

unskilled funds fall in between the cutoffs and therefore cannot be singled out. In 

other words, the study appears underpowered.  

 

When the skilled/unskilled funds are identified based on the right/left z-value 

cutoffs like above, it is useful to know the tail false discovery rates: 

 

 
         

[ ( ) | ]
[ ( ) | ]

( ) {case i is null | }
( ) {case i is null | }

f

f

i

i

E fdr t t z

E fdr t t z

FdrRight z P z z

FdrLeft z P z z

≥

≤

≥
≤

= =
= =  

(4.2.1) 
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Figure 4.2.2 Estimated fdr (black), FdrLeft (red), FdrRight (green) for               
pre-expense returns and theoretical null 

Figure 4.2.2 shows the estimates of ,  ,  and fdr FdrRight FdrLeft . For instance, 

Table 4.2.2 shows that fdr is under 0.2 to the right of z = 2.95. If we say that all 

funds with z-scores over 2.95 are outperforming, we will get 

FdrRight(2.95)=11.85% of false discoveries. Likewise, declaring all funds with  

z<-3.28 underperforming will produce FdrLeft(-3.28)=13.56% of false discoveries. 
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Table 4.2.2 Power statistics for pre-expense returns and theoretical null 

Efdr EfdrRight EfdrLeft   

0.56 0.5 0.64   

        

fdr = 0.2  
cutoffs 

FdrLeft(-3.28) FdrRight (2.95)   

(-3.28; 2.95) 0.1356 0.1185   
        

    Proportion of 
Identifiable 

performers based on 
fdr = 0.2 cutoff 

  

        
  Positive and negative Positive only Negative only 
  11.04% 14.94% 5.62% 

Number of 
funds 

22 out of 198 18 out of 118 4 out of 80 

 

A high power means that ( )fdr z  is small on the support of 1( )f z , which can be 

described by an overall (post hoc) power measure:

 
1

1

1

( ) ( )
[ ( )]

( ) f

fdr z f z dz
Efdr E fdr z

f z dz
= =


 

(4.2.2) 

It can be adapted to measure the power in the left and right tails as follows: 

1

1

1
0

1
0

0

1

0

1

( ) ( )
[ ( ) | 0]

( )

( ) ( )
[ ( ) | 0]

( )

f

f

fdr z f z dz

EfdrRight E fdr z z

f z dz

fdr z f z dz

EfdrLeft E fdr z z

f z dz

+∞

+∞

−∞

−∞

= = >

= = <









 

(4.2.3) 

If a study has a good power, Efdr should be small, say, 0.2. Table 4.2.2 shows 

that, although there is more power in identifying the outperformers 
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(EfdrRight=0.5) than in identifying the underperformers (EfdrLeft = 0.64), the 

study is still very underpowered.  

The lower part of Table 4.2.2 shows what such high Efdr values imply in practice. 

Suppose that we wish to identify the outperforming (underperforming) funds 

based on fdr = 0.2 right (left) cutoffs. Overall, we will be able to identity just 

11.04% of “non-zero” (positive and negative combined) performers, which 

amounts to 22 funds out  of 198. Focusing just on good performers, we can 

identify 14.94% of them, i.e. only 18 funds out of total 118 in the population. 

Given that we are willing to tolerate a sizable 11.85% of false discoveries, our 

ability to pick winners appears very limited. As for picking losers, it is even worse: 

we tolerate 13.56% of false discoveries and still are able to identify only 5.62% of 

negative performers, i.e. only 4 funds out of 80 underperformers in the 

population. 

 

The only way to increase the proportion of identifiable performers for this sample 

is to try to tolerate a higher percentage of false discoveries, i.e. to move the left 

and right cutoffs closer to zero. 
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Table 4.2.3 Identified underperformers and false discoveries vs. FdrLeft for  
pre-expense returns and theoretical null 

FdrLeft Proportion of 
identified 

underperformers, 
% 

Number of 
identified 

underperformers 
(rounded) 

Number of 
false 

discoveries 
(rounded) 

0.1356 5.62 4 out of 80 <1 
0.2 12.5 10 out of 80 2 
0.3 23 18 out of 80 8 
0.4 36 30 out of 80 19 
0.5 51 41 out of 80 41 
0.6 68 54 out of 80 82 
0.7 86 67 out of 80 161 
0.8 100 80 out of 80 320 

Table 4.2.4 Identified outperformers and false discoveries vs. FdrRight for  
pre-expense returns and theoretical null 

FdrRight Proportion of 
identified 

outperformers, 
% 

Number of 
identified 

outperformers 
(rounded) 

Number of 
false 

discoveries 
(rounded) 

0.1185 14.94 18 out of 118 2 
0.2 29 34 out of 118 9 
0.3 47 55 out of 118 24 
0.4 65 78 out of 118 51 
0.5 83 98 out of 118 98 
0.6 95 112 out of 118 168 
0.7 100 118 out of 118 275 

 

Tables 4.2.3 and 4.2.4 describe the corresponding tradeoff. For instance, to 

select about 50% (41 funds) out of all 80 underperformers one has to tolerate 

FdrLeft of 0.5. That means that getting this many underperformers is possible 

only in conjunction with just as many “zero” performers. For outperformers, the 

situation is better but not by much: to select 50% (59 funds) out of all 118 

outperformers, one has to tolerate FdrRight of about 0.32  meaning that  28 

useless funds (“zero” performers) have to be selected also: 28/(59 + 28)=0.32. 
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To obtain 90% (106 funds) of outperformers, one has to include about 135 “zero” 

performers that are not going to be distinguishable from outperformers. 

 

Suppose that a fund of MF funds wants to construct an outperforming portfolio. 

After the expenses are deducted, all selected “zero” performers inevitably turn 

into underperformers and many outperformers turn into zero or even negative 

performers. Unless there remain some very strong performers who can make up 

for the rest, it is reasonable to require FdrRight be well under 50%, say, 20% at 

most. This corresponds to a portfolio of size under 41 (33 skilled and 8 unskilled 

funds for FdrRight = 0.2, with right z cutoff equal to 2.608). Further, some of 

these 41 funds may have to be dropped because of investor-specific restrictions 

(compliance, diversification, risk management, etc). This suggests that one’s 

ability to construct an outperforming portfolio of MF is fairly restricted. 

 

The second goal of pre-expense analysis, identification of individual talents, is 

hard to achieve also: e.g. the list of “top 87” performers (87 = 59 + 28) will have 

28 indistinguishable zero performers, which won’t make it very useful. The list of 

top 41 performers will have some 8 zero performers in it. The latter may be 

acceptable to someone who seeks to hire just one or two talented money 

managers, but still this warns one against the sizable amount of useless entries 

inevitably included in all kinds of “top performers” lists. 

 

An interesting question is whether one could improve the situation by increasing 

the sample size and, thus, increasing the power. Here, increasing the sample 

size means increasing T in (2.1.3), e.g. the number of observations per fund. We 

are going to assume that the standard error of iα  in (2.1.3) is proportional to 

1/ T  and that the parameters such as 0 1 1, ,p p p+ −  are fixed at their point 

estimates and only the number of observations per each fund is multiplied by a 

factor greater than one. 
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 The current sample is 14 ½ years long with an average of 10 ¾ years of 

observations per fund; we can loosely think of this as having 10 ¾ years of data 

for each fund in the sample. 

 

 

Figure 4.2.3 EfdrLeft (red), EfdrRight (green), Efdr (blue) vs. number of 
observations per fund (in years) for pre-expense returns and theoretical null 

Figure 4.2.3 (obtained from locfdr) shows the increase in power vs. average 

sample size. For instance, if the current sample were doubled (to about 20 years 
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per fund on average) EfdrRight would decrease from 0.5 to 0.3. Having 32 years 

of data for each fund would decrease EfdrRight to a desirably low level of 0.2.  

 

 Figure 4.2.4 Proportion of identified outperformers (green), underperformers 
(red) vs. number of observations per fund (in years) for pre-expense returns and 

theoretical null. FdrRight and FdrLeft are fixed at 0.2 

Figure 4.2.4 reflects our ability to identify more of the present 

over/underperformers thanks to a larger sample size given that FdrLeft and 

FdrRight are both fixed at 0.2.  Roughly doubling the sample (from 10 ¾ to 20 

years per each fund) will help us to identify about 76% (90 out of 118) of 

outperformers as opposed to 28% (33 out of 118) for the original sample. 

Having 32 years of observations for each fund could help identify 90% of 

outperformers. For underperformers the power is much worse: even with 40 
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years per each fund only about 81% (65 out of 80) of underperformers are 

identified.   

 

Unfortunately, extending the sample back (e.g., BSW sample with 32-year span) 

can increase the number of funds but is not likely to produce many more 

observations per fund. For this study, the span is 14 ½ years with the mean of  

l0 ¾  years per fund and the standard error for the mean less than 1 month. 

Although 10% of the funds span the entire 14 ½ years, it is still unlikely to obtain 

a dataset with, say, more than 15 years of observations per fund on average, 

regardless of how far back it is extended. Therefore, power statistics obtained 

when there are 15 years of observations for each fund can be considered the 

upper bounds for the power. For the current dataset, having 15 years of data per 

each fund will not drive Efdr, EfdrRight and EfdrLeft much closer to 0.2 and only 

58% (68 out of 118) outperformers will be identified with FdrRight = 0.2.  

 

These findings suggest that unsatisfactory power is inherent to both the current 

and BSW study despite a much larger time span of the latter. It appears to be an 

issue to consider for any MF study that is based on monthly data and a similar 

multifactor performance evaluation model. 

 

In addition, a long-living MF is likely to be managed by a few successive portfolio 

managers and, practically speaking, there are reservations about whether the 10-

15 year-old data are relevant (unless the study is purely for historical purposes). 
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4.3. Pre-expense returns, Empirical null 

 

All the inference in Section 4.2 was based on the theoretical null assumption. 

Therefore, there is no surprise that the obtained confidence intervals for 

0 1 1, ,p p p+ −  were consistent with those of BSW. Given that the 95% confidence 

interval for 0p  in Table 4.2.1 is (87.95; 90.89), it is possible to assume that 

0 0.9p ≥  in order to check whether the theoretical null N(0, 1) is adequate for the 

data.  

 

We are going to use the same procedure as above but assume that the null 

distribution is 2
0 0 0(.) ~ ( , )f N δ σ . If the theoretical null is appropriate, the empirical 

parameters should not be significantly different from the corresponding 

theoretical ones. 
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Figure 4.3.1 Estimated mixture density (green) and its null component (blue 
dashed) for pre-expense returns and empirical null 

Figure 4.3.1 shows the fitted empirical null component 0 0̂ˆ ( )p f z  (blue dashed 

curve) and the estimated mixture density (green curve, the same as on Figure 

4.2.1).  
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Table 4.3.1 Performance evaluation summary and relevant statistics for  
pre-expense returns and empirical null 

p0, % p1+, % p1-, % 

 
 

98.11 (0.99) 

 
1.85(0.99) 

 
0.04 

95% CI (96.17; 100.05) (-0.09; 3.79) 
Number of 

funds 
1840 35 1 

Zero interval Lambda EfdrRight 
(-1.7; 1.7) 0.0891 0.712 

 
delta0 

 
sigma0 

t-value for H0: 
sigma0 = 1 

 
Dispersion variate 

A 
0.0039 

(0.0353) 
1.179 (0.034) 5.29 0.276 

 

 

As we see from Table 4.3.1, while 0δ  is indeed indistinguishable from zero, 0σ  is 

significantly greater than one with the corresponding t-value of 5.29. In other 

words, the z-values exhibit overdispersion which is significant, at least 

statistically. Since the estimate of 1p
−  is very close to zero, the standard errors for 

0p̂ and 1p̂
+ are given under the assumption that 1 0p− = . 

 

Speaking of practical significance, one may think of such z-values as being 

marginally N(0,1) and pairwise correlated with the correlation density 2~ (0,  )Nρ τ  

(see Efron’s example in Section 3.2). Recall that in Section 3.2 the dispersion 

variate A is defined as a single independent realization from the correlation 

density. The estimate of the dispersion variate A in Table 4.3.1 is equal to 0.276. 

Therefore, the overdispersion appears to be even more significant than the 

preliminary guess of A = 0.16 discussed in Section 3.2. Returning to the example 
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based on ( | )Fdr x A  from (3.2.1), if we assume that (2.5 | 0) 0.2Fdr = , then 

(2.5 | 0.276) 2.37*0.2 0.474Fdr = = .  

 

It means that if 100 z’s fall above 2.5, 80 of them are true discoveries if the 

theoretical null is used, but with the empirical null that number drops to about 53. 

Also, note that the value of λ  in Table 4.3.1 and everywhere else is calculated 

under the theoretical null and, thus, underestimates the real cutoff p-value under 

overdispersion (i.e., the zero interval choice is less conservative than suggested 

by λ ). 

 

Comparing Figure 4.3.1 and 4.2.1, we see that the empirical null has a much 

better fit to ˆ ( )f z  in the central part of the histogram, i.e., the bias of the null 

distribution is reduced. In theory, the blue dashed curve, 0 0̂ˆ ( )p f z , must always be 

under the green curve, ˆ ( )f z . This is clearly violated on Figure 4.2.1, indicating 

high bias. 

 

Naturally, the empirical null implies higher variance, but if we compare the 

measures of variance (3.3.6) and bias (3.3.4) of the theoretical and empirical 

nulls on the same zero interval (-1.7; 1.7) it turns out that the empirical null 

produces the variance that is 2.2 times as large and the bias that is 34.5 times as 

small. Therefore, there is both practically and statistically significant evidence 

against the theoretical null. 

 

The usage of empirical null being justified, it implies that the theoretical null-

based  inference overestimated the number of both skilled and unskilled funds in 

the population. The 95% confidence interval for 0p  changes from (87.95; 90.89) 

under theoretical null to (96.17; 100.05) under empirical null. The latter means 

that it is possible that both underperformers and outperformers are not present  
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in the population at all. The estimated number of outperformers drops from 118 

to 35 and the estimated number of underperformers drops from 80 to 1.   

 

The estimated number of outperformers, 35, is unlikely to be significant 

practically. Besides, the power is extremely poor: the absence of yellow triangles 

on Figure 4.3.1 shows that in all bins fdr is above 0.2, and EfdrRight is 0.712.  

Table 4.3.2 Identified outperformers and false discoveries vs. FdrRight for  
pre-expense returns and empirical null 

 
 

FdrRight 

Proportion of 
identified 

outperformers, 
% 

Number of 
identified 

outperformers 
(rounded) 

Number of 
false 

discoveries 
(rounded) 

0.21 1 < 1 out of 35 < 1 
0.3 7 2 out of 35 1 
0.4 16 6 out of 35 4 
0.5 31 11 out of 35 11 
0.6 50 17 out of 35 26 
0.7 72 25 out of 35 59 
0.8 95 33 out of 35 133 
0.9 100 35 out of 35 315 

 

Table 4.3.2 shows that FdrRight is always greater than 0.2. In order to select 

50% of outperformers (about 17 out of 35), one has to tolerate FdrRight of 0.6 by 

selecting about 26 “zero performers” as well. 

 



 

 

56

  

Figure 4.3.2 EfdrRight vs. number of observations per fund (in years) for pre-
expense returns and empirical null 

Figure 4.3.2 shows that it would take an unrealistic 43 years of observations per 

fund to obtain EfdrRight of 0.2. For 15 years of data per each fund, EfdrRight is 

still 0.57, far above 0.2. 
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Figure 4.3.3 Proportion of identified outperformers vs. number of observations 
per fund (in years) for pre-expense returns and empirical null, FdrRight = 0.2 

Figure 4.3.3 shows that at the level FdrRight = 0.2 outperformers are 

undetectable for the current sample. It would take roughly twice as much data 

(22 years per fund) to detect 50% (17 out of 35) outperformers. For 15 years per 

each fund, we are able to detect only 20% (7 out of 35) of outperformers. 

  

We see that taking overdispersion into account leads us to conclusion that 

outperforming funds are both much fewer and much harder to single out than 

under the theoretical null. As for outperforming portfolio formation, it is impossible 

to construct one with FdrRight under 0.2. As for identifying individual talents, 

consider the “top 43” list of funds that will have 26 useless entries (43 = 17 + 26) 

and is of not much value. Therefore, while employing the theoretical null leaves a 
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little hope for obtaining a practical gain from performance evaluation, switching to 

the empirical none diminishes that hope to almost zero. 

 

Since this study’s sample has a significant overlap with that of BSW it is very 

likely that the overdispersion effect of similar magnitude was present in their 

sample also. It means that BSW study overestimated the percentage of skilled 

and unskilled funds in the population just as well. Under the empirical null, the 

percentage of outperformers in BSW sample will probably be greater than 1.85% 

in Table 4.3.1 but only because of better MF performance prior to 1993. 

4.4. Net returns, Theoretical Null 

The net returns dataset produces 1911 z-values.  

 
Figure 4.4.1 Estimated mixture density (green) and its null component (blue 

dashed) for net returns and theoretical null 
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Figure 4.4.1 shows the histogram of z’s, the mixture density estimate (green 

curve fitted to 90 bins) and the fitted theoretical null component 0ˆ (0,1)p N⋅  (blue 

dashed curve).  

Table 4.4.1 Performance evaluation summary and relevant statistics for  
net returns and theoretical null 

p0, % p1+, % p1-, % 

 
 

70.91 (1.22) 
 

0.45 
 

28.64(1.22) 

95% CI (68.52; 73.30) (26.25; 31.03) 

Number of funds 1355 9 547 

Zero interval (-1.4; 1.4) 

Lambda 0.1615 

 

Table 4.4.1 and Table 4.1.1 show a good correspondence between the results 

for net returns. Since the estimate of 1p
+  is very close to zero, the standard errors 

for 0p̂ and 1p̂
−  in Table 4.4.1 are given under the assumption that 1 0p+ = . 

Apparently, the estimated number of outperformers (9 funds out of 1911) is not 

significant neither statistically nor practically.  
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Table 4.4.2 Power statistics for net returns and theoretical null 

Efdr EfdrRight EfdrLeft  

0.35 0.49 0.35  

        

fdr = 0.2  
cutoffs 

FdrLeft(-2.23) FdrRight ( 3.61 ) 
  

(-2.23; 3.61) 0.11 0.17   

        

    Proportion of 
Identifiable performers 

based on fdr=0.2 
cutoffs 

  

  Positive and 
negative 

Positive only 
Negative 

only 
  29.17% 13.08% 29.42% 

Number of 
funds 

162 out of 556 1 out of 9 
161 out of 

547 

 

Even though EfdrLeft = 0.35 is smaller than before, it is still well above 0.2 and 

the power is not too good.  
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Table 4.4.3 Identified underperformers and false discoveries vs. FdrLeft for net 
returns and theoretical null 

 
 

FdrLeft 

Proportion of 
identified 

underperformers, 
% 

Number of 
identified 

underperformers 
(rounded) 

Number of 
false 

discoveries 
(rounded) 

0.11 29.42 161 out of 547 20 
0.2 54 295 out of 547 75 
0.3 80 438 out of 547 188 
0.4 96 525 out of 547 350 
0.5 100 547 out of 547 547 
        

 

 

Figure 4.4.2 EfdrLeft vs. number of observations per fund (in years) for net 
returns and theoretical null 



 

 

62

 

Figure 4.4.3 Proportion of identified underperformers vs. number of observations 
per fund (in years) for net returns and theoretical null, FdrLeft = 0.2 

In particular, 54% of underperformers (295 out of 547) are identified with 

FdrLeft=0.2 (Table 4.4.3). Increasing the sample size to 15 years of data per 

each fund reduces EfdrLeft from 0.35 to 0.29, and only the unrealistic 26 years of 

data per fund brings EfdrLeft to 0.2 (Figure 4.4.2).  Still, if it is possible to extend 

back the sample and obtain 15 years of data per fund, it pays off because the 

identifiable (under FdrLeft = 0.2) proportion of underperformers increases from 

54% to 72% (394 funds out of 547). It is still far short of the 90% (492 funds out 

of 547) that could be obtained for 26-year sample (Figure 4.4.3). 
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Despite the low power, a high proportion of underperformers makes it much 

easier to create sizable “bottom lists”: e.g., the “bottom 156” list has FdrLeft of 

0.1 which corresponds to about 16 useless funds with zero performance. 

4.5. Net returns, Composite Empirical Null 

For net returns data, it is not possible to fit the empirical null directly as in Section 

3.3 because 0p  is way under 0.9. But the magnitude of overdispersion detected 

in Section 4.3 is not likely to change because of subtracting the expenses so it is 

safe to say that the theoretical null is inadequate for net returns just as well. 

When it is taken into account, the estimated number of outperformers (9 funds) 

will be reduced even more and the estimated number of underperformers will be 

reduced by a few percent.  

 

Qualitatively, the results will remain about the same: the proportion of 

outperformers is both practically and statistically zero; proportion of 

underperformers is both practically and statistically positive (less than 28% but 

probably more than 18%); the majority of funds (well over 70%) have zero net 

performance.  

 

Note that previously we tested simple nulls: 

0

0

: 0  VS  : 0
                     or                  

: 0  VS  : 0

a
i i i i

a
i i i i

H H

H H

α α

α α

= >

= <

 

(4.5.1) 

The test will become a lot more powerful if we could calculate the p-value under 

the composite null setting, i.e. 

 

 

0 : 0  VS  : 0
               

a
i i i iH Hα α≤ >

 
(4.5.2) 
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Usually, the distribution of p-value under the composite null is unknown, so the 

simple null with 0iα =  is used instead. For this study, we can use the data itself 

to estimate the composite empirical null, just like we estimated the simple 

empirical null. In terms of the structural model, we have 

2
0

0 0 1 1

0 1

0

1

~ (.)
| ~ ( , )       

( ) ( ) ( )

{  0},   {  > 0}                          

( ) "null" density with support on {   0}

( ) "positive" density with support on {  > 0}

g g

g

z N

g p g p g

where

p P p P

g

g

α
α α σ
α α α

α α
α α
α α

+ +

+

+

= +

= ≤ =

− ≤

−

 

(4.5.3) 

In terms of z-values, we have 

0 0 1 1

2
0 0 0

2
1 1 0

0 1

( ) ( ) ( )    - mixture density of z's      

( ) * (0, )          - density of null z's                 

( ) * (0, )        - density of alternative z's

1

f z p f z p f z

where

f z g N

f z g N

p p

σ
σ

+

+ +

+

= +

=

=

+ =

 

(4.5.4) 

The null density 0( )f z  is estimated on the zero interval is ( ; )z z− +  where z−  is 

some small value in the left tail, e.g. z− = -4; for z z−< , we assume that 

0 0( ) ( )p f z f z= ; z+  serves as a smoothing parameter.  

 

From the results in the previous section, we would expect the optimal z+  to be at 

least 1.4. Efron (2004) suggests a non-symmetrical parametric null, such as split-

normal 2 2
0 0 1 2(.) ~ ( , , )f SN δ σ σ , in order to avoid the influence of the left-tail z’s on 

the inference in the right tail. However, fitting a split-normal distribution along with 

normal 2
0 0( , )N δ η  for 4z− = −  and [1.4;  2.2]z+ ∈   showed that the corresponding 

null components 0 0̂ˆ ( )p f z  are virtually identical and 2
0 0( , )N δ η  is quite adequate for 

modeling the composite null.  
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The choice of zero interval was performed as described in Section (2.3) where 

the variance was calculated on the interval ( ( );   )median z + ∞  and the bias on the 

interval +( ( );   z )median z  because of our interest in the right-tail inference  

( ( )median z  is very close to 0̂δ ). The value of λ  in this case is equal to 1 ( )z+− Φ , 

where (.)Φ  is the standard normal c.d.f. 

 

Figure 4.5.1 shows the estimated null component 2
0 0 0

ˆ ˆˆ ( , )p N δ η⋅  (blue dashed 

curve). 

Figure 4.5.1 Estimated mixture density (green) and its null component (blue 
dashed) for net returns and composite empirical null 
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Table 4.5.1 Performance evaluation summary and relevant statistics for  
net returns and composite empirical null 

p0, % p1+, % 

99.21 (0.7) 0.79 (0.7) 

95% CI (97.84; 100.58) (-0.58; 2.16) 

Number of funds 1896 15 

Zero interval Lambda 

(-4; 1.6) 0.055 

delta0 eta0 EfdrRight 

-0.624 (0.033) 1.229 (0.028) 0.725 

 

Table 4.5.1 shows that the bias-variance tradeoff is minimized on the zero 

interval (-4; 1.6).  Here we were supposed to expect a much larger power to 

identify outperformers than for the test in Table 4.1.1. First, the mean of null 

density is shifted to the left by a sizable value of 0.624.  Secondly, inclusion of z-

values in [-4; -1.4] reduced the standard error of 0p̂  by 0.38% without causing 

any increase in the bias in the right tail. Inclusion of z-values in [1.4; 1.6] reduced 

0ˆ. .( )s e p   by another 0.14% and overall it dropped from 1.22% in Table 4.1.1 to 

0.7% in Table 4.5.1. 

 

In spite of this, the estimated number of outperformers grows from 9 to only 15 

(still practically insignificant) and is not statistically different from zero. The only 

explanation is that the estimated null distribution 2
0 0 0
ˆ ˆ ˆ( ) ~ ( , )f z N δ η  reflects the fact 

that 2
0σ  in (4.5.4) is much greater than one.  Taking that overdispersion into 

account drastically reduces the final estimated number of outperformers. It 

“negates” all the benefits we hoped to get from the composite empirical null. 



 

 

67

Table 4.5.2 Identified outperformers and false discoveries vs. FdrRight for net 
returns and composite empirical null 

 
 

FdrRight 

Proportion of 
identified 

outperformers, 
% 

Number of 
identified 

outperformers 
(rounded) 

Number of 
false 

discoveries 
(rounded) 

0.24 1 < 1 out of 15 < 1 
0.3 5 1 out of 15 < 1 
0.4 17 3 out of 15 2 
0.5 30 5  out of 15 5 
0.6 47 7 out of 15 11 
0.7 68 10 out of 15 24 
0.8 89 13 out of 15 53 
0.9 100 15 out of 15 135 

 

 

Besides, EfdrRight is over 0.725 and the power is abysmal. As Table 4.5.2 

shows, FdrRight is always above 0.24.  The list of “top 15” performers has 

FdrRight = 0.58 that amounts to about 9 useless funds in the list.  

4.6. Net Performance vs. Mutual Fund Investment Objective 

The 1911 funds in the sample are classified by the four investment objectives: 

“Small Company Growth” (SCG), “Other Aggressive Growth” (OAG), “Growth” 

(G) and “Growth and Income” (GI). We merge the first two groups as “Aggressive 

Growth” (AG) and consider only three groups. It would be interesting to look into 

the net performance versus investment objective. Statistically speaking, the 

findings of BSW suggest that one may be able to increase the power by using 

investment objective as a control factor.  

 

BSW compare the fund categories by running their bootstrap-based procedure 

for each category separately. We can perform an fdr-based analysis which is not 

going to suffer from the misspecifications of null distribution since we use the 
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empirical null. First, let us compare the net outperformance across categories 

based on the composite empirical null from Section 4.5.  

 

Efron (2007) proposes the following method. Suppose that all z-values are 

divided into two classes, A and B. Class A corresponds to the investment 

category of interest and class B corresponds to the rest of funds. Then the 

mixture density and fdr can be decomposed as follows: 

 

0 0 1 1

0 0

0 0

( ) ( ) ( )
,   - a priori probabilities of class A and B
( ) ( ) ( )  - class A mixture density

( ) ( ) / ( )      - class A fdr                   
( ) ( )

A A B B

A B

A A A A A

A A A A

B B B

f z f z f z

f z p f z p f z

fdr z p f z f z

f z p f z

π π
π π

= ⋅ + ⋅

= +
=

= + 1 1

0 0

( )  - class B mixture density
( ) ( ) / ( )      - class B fdr

B B

B B B B

p f z

fdr z p f z f z=

 

(4.6.1) 

 

It can be shown that 

0

0

( )( ) ( )
( )

                                                     
( ) {case from class A and null | z}

( ) {case from class A | z}

A
A

A

A

A

z
fdr z fdr z

z

where

z P

z P

π
π

π
π

=

=
=

 

(4.6.2) 

The difference between classes A and B is tested via the null hypothesis: 

0 :   ( ) ( )AH fdr z fdr z=  (4.6.3) 

If we assume that the null densities for A and B coincide for some z, then 

0
0 0 0

0

0

0

( ) ( ) ( )

                          and
1( ) ( )                
( )

A A
A B A

A A
A

A

p
f z f z z const

p

p
fdr z fdr z

p z

ππ

π
π

=  = =

= ⋅ ⋅

 

(4.6.4) 
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We don’t have to run a separate fdr analysis for each group as long as the 

assumption 0 0( ) ( )A Bf z f z=  holds in the area of interest, the right half of z-value 

histogram in this case.  

 

In that case, (4.6.4) implies that the test (4.6.3) is equivalent to testing
 

0 : ( )AH z constπ =  (4.6.5) 

To check the assumption 0 0( ) ( )A Bf z f z=  , we use another property:
 

0( ) ( ) 1 ( ) ( )A B A Afdr z fdr z z zπ π= =  =  (4.6.6) 

In particular, (4.6.6) is likely to hold for [ 1;0.5]z∈ − . If ( )A zπ  (which can be 

estimated) is a constant in that interval, so is 0( )A zπ . According to (4.6.4) this can 

be used as a diagnostic for the assumption 0 0( ) ( )A Bf z f z= . 

 

We use the same 90 bins as on Figure 4.5.1 and estimate ( )A zπ  via binomial 

regression over the bins of interest with 1z ≥ − :

 0 1 2
2 3

3 4

logit( ( )) max(0.5 ,0) max( 0.5,0)

                            + max( 0.5,0) + max( 0.5,0)
A z z z

z z

π β β β
β β

= + ⋅ − + ⋅ − +

⋅ − ⋅ −
 

(4.6.7) 

The interval (-1; 0.5) corresponds to 14 non-empty bins and 858 z-values and the 

remaining (0.5; max(z)) corresponds to 27 non-empty bins and 357 z-values. 

 

First, we keep the first covariate in the model and use a model selection 

procedure to include any of the other three covariates that are important.  

Then, if the p-value for 1̂β  is small it suggests 0 0( ) ( )A Bf z f z≠ . If the p-value is 

large, we can proceed under 0 0( ) ( )A Bf z f z= . In that case, we drop the first 

covariate. Then, the p-value for 0 :H ”no covariates are important in (4.6.7)” is 

used to test (4.6.5).  
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For instance, for AG funds the model selection step produces the model with two 

covariates corresponding to 1β  and 3β  (Figure 4.6.1). The stars indicate the 

observed proportions of AG funds in each bin and the blue curve is the fitted 

probability from (4.6.7). 

 

 

Figure 4.6.1 Probability Pi_A(z) for Aggressive Growth estimated with two 
covariates 

The estimated probability does not change much in (-1; 0.5) and, indeed, the p-

value for  1β  is 0.6997 (Table 4.6.1). After the first covariate is dropped, only the 

second order term remains (Figure 4.6.2) and its p-value is 0.0079 (Table 4.6.1). 
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Figure 4.6.2 Final model fit for probability Pi_A(z) for Aggressive Growth 

Table 4.6.1 Net outperformance vs. investment objective, composite empirical 
null 

Category 
Number 
of funds 

Pvalue for 
H0: 

f_A0(z) = 
f_B0(z) 

P-value 
for H0: 

fdr_A(z) = 
fdr(z) 

Number of 
outperformers Proportion

G 886 0.7083 0.5606 7 0.79% 

GI 398 0.9698 0.0006 0 0% 

AG 627 0.6997 0.0079 19 3% 

Population 1911 n/a n/a 15 0.79% 
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We therefore conclude that ( ) ( )AGfdr z fdr z≠ . Column 3 of Table 4.6.1 shows that 

the hypothesis 0 0( ) ( )A Bf z f z=  is not rejected for any category. Column 4 

suggests that ( ) ( )GIfdr z fdr z≠  but we fail to reject ( ) ( )Gfdr z fdr z= . 

 

Figures 4.6.3 and 4.6.4 show the final models (with the first covariate dropped) 

for GI and G groups, correspondingly. 

 

Figure 4.6.3 Final model fit for probability Pi_A(z) for Growth&Income 
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Figure 4.6.4 Final model fit: probability Pi_A(z) for Growth 

A number of logistic regression diagnostics (not reported, for details see 

Pregibon (1981)) confirm the adequacy of all three final logistic models. It follows 

from (4.6.2), (4.6.4) and (4.6.6) that fdr for class A can be estimated as

 ˆ (0)ˆ ˆ( ) ( )
ˆ ( )
A

A
A

fdr z fdr z
z

π
π

=  
(4.6.8) 
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Figure 4.6.5 Combined fdr and Growth fdr (blue), Aggressive Growth fdr (green), 
Growth&Income fdr (red) 

Figure 4.6.5 shows the curves corresponding to ˆ ( )fdr z (which coincides with 

ˆ ( )Gfdr z ), ˆ ( )GIfdr z , and ˆ ( )AGfdr z . The first and obvious conclusion is that there are 

no skilled managers in GI group.  

 

Using the estimate ˆ ( )AGfdr z  and ˆ ( )Gfdr z , we conclude that there are 19 

outperformers among 627 AG funds and 7 outperformers among 886 G funds. 

Therefore, while the percentage of outperformers is 0.79% in the population (15 

out of 1911), it is about 3% in AG group, 0.79% in G group and 0% in GI group 

(Table 4.6.1). 
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While ˆ ( )fdr z  is always above 0.24, ˆ ( )AGfdr z  is under 0.2 for 3.56z ≥ . 

Unfortunately, only one AG fund has 3.56z ≥  and can be identified as 

outperformer. Even if we raise the fdr cutoff from 0.2 to a quite aggressive level 

of 0.4 ( 2.807z ≥ ), only 4 out of 19 AG outperformers are identified. Even a 

relatively superior AG group is unable to produce a practically significant number 

of identifiable outperformers.  

 

The results of BSW for the same three groups (G, GI, AG) are not very 

consistent. In their 05/2007 version (based on 1464 funds, 1975-2002) they claim 

that GI funds have the lowest proportion of skilled managers (0%) and the AG 

funds are the best (8.0%). In BSW of 05/2008 (2076 funds, 1975-2006) they 

claim that “results for the three investment-objective subgroups… are similar” but 

do not provide the numbers. Instead, they look into the “short-term performance” 

(see Section 4.7) to find that AG is the best (4% of outperformers) and GI is the 

worst (0%).  

 

BSW used the theoretical null, while the results in this section are based on the 

composite empirical null to provide extra power and adjust for apparent 

overdispersion. Our findings are consistent with the preliminary results of BSW 

and, at the same time, provide more realistic and statistically grounded picture of 

the relative investment category performance. 

 

Comparison of investment categories based on pre-expense returns is of interest 

for the reasons outlined in Section 4.2 and because of additional theoretical 

implications which are discussed in Section 4.8. Using the simple empirical null 

from Section 4.3, we look into the distribution of both out- and underperformers 

across investment objectives. 
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Table 4.6.2 Pre-expense performance vs. investment objective, simple empirical 
null 

Category 
Number 
of funds 

Number of 
under -

performers
Proportion 

Number of 
out-

performers 
Proportion

G 871 0 0.00% 16 1.84% 

GI 387 1 0.26% 0 0.00% 

AG 618 35 5.66% 29 4.69% 

Population 1876 1 0.04% 35 1.85% 
 

While there are statistical differences between the categories, it appears that the 

only practically significant result is that AG group has a higher proportion of 

outperformers and a higher proportion of underperformers than G and GI groups. 

However, the power is still low: for instance, only 2 out of 29 AG outperformers 

are identified with fdr = 0.2 cutoff and 10 out of 29 are identified with fdr = 0.4 

cutoff. Out of 35 AG underperformers, zero are identified with 0.2 cutoff, and only 

4 are identified with 0.4 cutoff. See Section 3.8 for further discussion. 

4.7. Short-term net performance 

The long-term results of net MF performance are quite disappointing because the 

number of outperformers is never practically significant: 12 in BSW study and the 

best result for this study is 26 (7 G and 19 AG funds discovered in Section 4.6).  

 

However, the short-term performance may be better, as suggested by BSW.  

To look into short-term performance, BSW partition the data into six non-

overlapping subperiods of 5 years each, starting with 1977-1981 and ending with 

2002-2006. If a fund has 60 observations on a subperiod, it is treated as a 

separate “fund” with 5-year history. They thus increase the number of estimated 
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alphas from 2076 to 3311 and the positive proportion goes up from 0.6 (0.8) % 

(Table 4.1.1) to a statistically significant 2.4 (0.7)%, correspondingly. In BSW this 

is interpreted as the evidence for superior “short-term” performance that exists 

for a while and gradually disappears because the “long-run equilibrium” has to 

settle. Berk and Green (2004) describe the equilibrium model, but BSW point out 

that if the model holds, the negative performance has to disappear just as well, 

which is not observed in reality.  

 

All this seems to imply that investors are more capable of recognizing the good 

performance (and that is the reason why it is only short-term) than the bad 

performance (it is not spotted and, therefore, continues for a long time). That is 

not very convincing and we will try to make a case that “superior short-term 

performance” is merely a result of inadequate multiple inference technique 

employed by BSW. 

 

Note that the extended dataset of 3311 “short-term funds” is a lot more likely to 

deviate from the weak dependence assumption. Many funds are included more 

than once, even though on different subperiods. But the major concern is that 

drastically reducing the number of observations per fund is very likely to increase 

the overdispersion of z-values. In the end, the “short-term” z-values will probably 

be more overdispersed than the original z-values. That alone could explain a 

higher estimated percentage of outperformers and, therefore, the utilization of 

empirical null is even more justified here.  

 

Similarly, we partition our dataset into three non-overlapping 58-month 

subperiods. If a fund has 50 or more observations on a subperiod, it is treated as 

a separate “short-term fund”. In the end, there are 3636 of such “funds”. Applying 

the theoretical null (just like in Section 4.4) gives the following results: 
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Figure 4.7.1 Estimated mixture density (green) and its null component (blue 
dashed) for 3636 “short-term” funds (net returns, theoretical null) 

Table 4.7.1 Net performance summary and relevant statistics for 3636  
“short-term” funds under theoretical null 

p0, % p1+, % p1-, % 

76.45 (0.74) 0.81 22.74 (0.74) 

95% CI (75.0; 77.9) (21.29; 24.19) 

Number of funds 2780 29 827 

Zero interval Lambda 

(-1.5; 1.5) 0.1336 

Efdr EfdrLeft EfdrRight

0.411 0.405 0.562 
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Comparing this to the results of Section 4.4, we see that the number of 

outperformers is larger (29 instead of 9) but is still practically insignificant. 

The standard error of 0p̂  is reduced from 1.22% to 0.74% but 1ˆ 0.81%p+ = , which 

is hardly statistically significant (standard errors in Table 4.7.1 are given under 

assumption 1 0p+ = ). That is, even when overdispersion is not taken into account, 

there is no evidence of short-term outperformance in 1993-2007, which is 

consistent with the overall deterioration of MF performance mentioned in Section 

4.1.  

 

Following the procedure of Section 4.5, we can try to empower the test via 

composite empirical null. Just like in Section 4.5, it turns out that 2
0 0( , )N δ η  is 

enough and split normal is unnecessary. The results are as follows: 

 

 
Figure 4.7.2 Estimated mixture density (green) and its null component (blue 
dashed) for 3636 “short-term” funds (net returns, composite empirical null) 
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Table 4.7.2 Net performance summary and relevant statistics for 3636  
“short-term” funds under composite empirical null 

p0, % p1+, % 

99.63 (0.69) 0.37 (0.69) 

95% CI (98.28; 100.98) (-0.98; 1.72) 

Number of funds 3623 13 

Zero interval Lambda 

(-3.5; 1.6) 0.055 

delta0 eta0 EfdrRight 

-0.467 (0.026) 1.254 (0.024) 0.877 

 

The composite empirical null is shifted to the left by 0.467, and because of 

inclusion of additional (mostly negative) z-values the standard error of 0p̂  

dropped from 0.74 to 0.69. Like in Section 3.5, this allows us to hope that more 

positive cases will be identified. However, as predicted above, the overdispersion 

is so severe that the estimated number of outperformers not only fails go up but 

actually drops from 29 to 13 funds and is statistically insignificant, as well. 

Therefore, we conclude that there is no compelling evidence of short-term 

outperformance in 1993-2007. 

 

On the other hand, BSW manage to construct an outperforming portfolio based 

on minimizing its FDR. The portfolio is observed for 27 years (1980 – 2006) with 

yearly recalculation of FDR for all funds and corresponding rebalancing. In the 

end, the portfolio produced statistically significant annual alpha of 1.45% with a 

p-value of 0.04, even though its average FDR was 0.415.  However, the BSW 

study provides compelling evidence that in 1980 – 1993 the proportion of 

outperformers in the population was much higher than in 1994 – 2006, with a 
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sharp and monotone decline from 1993 on. This pattern is so pronounced that it 

will likely to remain valid even when overdispersion is taken into account. 

Therefore, even though the decent performance of FDR-based portfolio is not 

spurious, it is more of historical interest. Our study does not find any evidence to 

state that the construction of outperforming MF portfolio would have been 

possible in 1993-2007. 

 

The traditional approach to form an outperforming portfolio is to include the top 

(based on z-value ranking) k% of funds at each rebalancing.  Without the 

multiplicity adjustment, the tail FDR or Fdr are not taken into account, and the 

proportion of useless funds in the portfolio is out of contol. Therefore, a multiple-

comparison-based cutoff (e.g., include all funds with Fdr < 0.2), applied at each 

rebalancing, should work better. 

 

However, any multiple inference procedure works with “input list” of z-values and 

the “quality” of this list is at least as important as an appropriate multiple 

inference method. In particular, in Section 3.2 it is suggested  that the empirical 

null-based fdr procedure “takes into account” the asset pricing model 

misspecification. Suppose, for simplicity, that all z’s are independent and the only 

source of overdispersion ( 2
0 1σ > ) is the model (2.1.3) misspecification, e.g. 

caused by a too small sample size T. Essentially, 2
0 1σ >  tells us that there is 

some extra noise in ˆ
iα ’s which we have to take into account by using 

2
0 0(0, )f N σ=  instead of 0 (0,1)f N= . Taking that into account will prevent us from 

making false discoveries, but it will not make the extra noise disappear. If the 

level of noise is very high, the procedure will simply declare that all or almost all 

cases are null.   

 

As a result, one cannot just rely on a multiple inference method to substantially 

improve the portfolio performance. In particular, Mamaysky et al. (2007) argue 
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that it is unlikely for a single performance evaluation model to be equally good for 

each fund in the sample. They show that using a few competing models, 

combined with backtesting, can significantly improve the performance of portfolio 

of MF. Using such approach coupled with a multiple inference procedure can be 

an interesting topic for future research. 

4.8. Size, Power and Asset pricing model misspecification 

An important issue in the asset pricing theory is that of asset pricing model 

misspecification. There are a few ways to detect misspecification. For instance, 

the theoretical requirement that discounted returns are unforecastable implies 

that in (2.1.3) the residuals are not supposed to be serially correlated. In this 

study, we say that the model is misspecified when the marginal distribution of null 

z’s is different from N(0,1). This can have many causes, including the 

abovementioned serial correlation. 

 

A practical way to check for such misspecification is to see whether “naïve” stock 

portfolio formation strategies that presumably have a zero alpha show any 

abnormal performance. For instance, introducing their “conditional” (i.e., with 

time-dependent regression coefficients) multifactor model, Ferson and Schadt 

(1996) show that three “naïve” portfolio formation strategies produce abnormal 

performance under some “unconditional” (with time-independent regression 

coefficients) multifactor models. When “conditioning” is introduced, the abnormal 

performance disappears which is interpreted as evidence that the unconditional 

models are misspecified and the conditional models are not. 

 

Kothari and Warner (2001) follow a similar path to investigate asset pricing model 

misspecification and power. First, they make a point that, in practice, the investor 

is interested in performance evaluation on a rather short time frame, from 3 to 5 

years. They construct 348 “naïve” stock portfolios that mimic an average MF’s 

general features, such as size, number of securities, book-to-market ratio, and 
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turnover. Each portfolio spans 3 years with a 1-month shift: the first portfolio is on 

[01/1966; 12/1968], the second is on [02/1966; 01/1969], and so on, until 1994 (it 

is similar to Fama-MacBeth procedure). As a result, the alphas are ordered 

sequentially and can be analyzed as a univariate and possibly autocorrelated 

stationary time series.  

 

They find that for Carhart model the true nulls tend to get rejected too often, even 

though they do not investigate whether the over-rejection is statistically 

significant. Because little to no serial correlation is found in the sequential alphas, 

the over-rejection (which is the same as overdispersion) can be interpreted as 

evidence in favor of Carhart model misspecification. In our study, it would be 

incorrect to say that the overdispersion found in Section 4.3 and elsewhere is 

caused solely by the misspecification of Carhart model because we cannot offer 

any evidence that our z-values are independent. 

 

Model misspecification makes it problematic to compare the output of different 

asset pricing models because the test size (type I error) gets out of control. 

Kothari and Warner find that at the nominal test size of 5% the rejection rate for 

Carhart model is 13% when all nulls are true and 80% when all nulls are false 

(outperformance is introduced artificially). For characteristic-based (CS), model 

the corresponding numbers are 3.4% and 59%. It means that Carhart model has 

a greater power but its actual test size is also larger than the nominal 5%.  

 

In such a case, Kothari and Warner conclude that the comparison between the 

models is “clouded”. We would like to note that comparison can still be made if 

asset pricing models are considered binary classifiers (i.e., zero- VS 

outperformance) and then their overall discriminative ability can be compared via 

Receiver Operating Characteristic (ROC) curve, e.g. area under ROC curve can 

be a good criterion. However, that approach does not work for dependent z’s 
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since, as explained in Section 3.2, the “dependence effect” and model 

misspecification effect can be absolutely indistinguishable. 

 

This study suggests an alternative approach to compare the power of different 

models that can work for dependent z’s and does not require the rather artificial 

“stretching out” of the portfolios in time like in Kothari and Warner. Construct a 

large number of “naïve” portfolios where the proportion of artificially introduced 

outperformers is under 10%. Run a few competing performance evaluation 

models and, like in Section 4.3, use the empirical nulls if necessary. Using the 

empirical nulls adjusts for both sources of null distribution misspecification: 

dependence among z’s and asset pricing model misspecification. It is not 

possible to tell these two effects apart. However, we believe that utilizing the 

empirical null puts the test sizes of different performance evaluation models on 

the same level. For instance, if we do this with Kothari and Warner portfolios 

under the Carhart model, we will get that 0σ >1, which is supposed to bring the 

inflated rejection rate of 13% closer to the target of 5%. In addition, a positive and 

significant estimate 1ˆ 0p > is likely to become indistinguishable from zero. After 

that, the estimated proportions of non-null cases and the power measures (Efdr, 

EfdrLeft, EfdrRight, and such like) become comparable among the models. 

 

Moreover, it may be unnecessary to introduce another layer of approximation by 

investigating artificial MF instead of real MF. For instance, if a preliminary 

analysis of a MF dataset shows that the proportion of interesting cases is a lot 

less than 10% (e.g., 1.85% in Section 4.3), one can artificially add some 

economically significant alphas to the existing MF in the sample and re-estimate 

to see how powerful the model is. The only thing we have to control is that the 

percentage of non-null cases be under 10%, which is doable, since there are 

enough bins with fdr = 1 that do not contain any “non-zero” performers. This 

approach looks especially attractive when the performance evaluation model is 

holdings-based, i.e. the exact composition of the portfolio is very relevant. 
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There is one more way to test the validity of an asset pricing model, which is 

probably the most traditional. A multifactor asset pricing model states that 

 

[ ] ' [ ],   1,ei
iE R E f i mβ= =  (4.8.1) 

where [ ]eiE R  is the average return for the asset i  in excess of risk-free rate, 

[ ]E f  is a p-dimensional vector of average excess factor returns.  

The p-dimensional vector iβ  is defined as the regression coefficient in 

' ,   1,ei i
t i i t tR f t Tα β ε= + + =  (4.8.2) 

where ei
tR  and tf  are random and observed excess returns for asset i and the 

factors at time t (see Cochrane (2005)). The Carhart model (2.1.3) is an example 

of (4.8.2) with p = 4 factors.  

 

Taking expectations of both sides of (4.8.2) w.r.t time and comparing the result to 

(4.8.1), we get that (4.8.1) implies that all the intercepts in (4.8.2) should be zero. 

In practice, the attention is paid not to the statistical significance of this test but to 

how practically significant the values of ˆ
iα  are.  

 

Further, consider so-called cross-sectional regression:   

[ ] ' [ ] ,    =1,ei
i iE R E f a i mβ= +  (4.8.3) 

where iβ  are obtained from (4.8.2) and are considered fixed covariates, ia  are 

interpreted as pricing errors for model (4.8.1) and [ ]E f  is a p-dimensional vector 

of estimated regression coefficients. While it depends on the intricacies of the 

joint estimation of (4.8.2) and (4.8.3), one may roughly assume that the pricing 

errors ia  in (4.8.3) are equal to the corresponding intercepts iα  in (4.8.2).  

 

In MF performance context, we may say that the pricing errors are negligible 

when the number of out- and underperformers (on pre-expense basis) is 

insignificant. Correspondingly, our only possible concern in this study is that in 
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AG group (Section 4.6) we find the total number of non-zero performers is 64 out 

of 618, or 10.35%. These portfolios are not “naïve” (they are actively managed 

MF), but, as we will see below, that is not the point. The 64 cases consist of 35 

underperformers and 29 outperformers, which means that on average, the 

performance is not practically different from zero, i.e. in (4.8.3) [ ] 0iE a ≈  even for 

AG group. 

 

However, given that iβ  in (4.8.3) are covariates, the distribution of error terms, ia , 

is not supposed to depend on the covariates. There is not supposed to be any 

sort of pattern when we plot the residuals ia  (or iα ) against any of p components 

of iβ . This is a common test for a multifactor asset pricing model.  

 

In particular, Huij and Verbeek (2008) employ this test and suggest that the four 

standard Carhart factors are inadequate for pricing MF. In particular, they 

suggest that the pricing errors depend on the value of ih  in (2.1.3), which is the 

same as the component of iβ  corresponding to HML or “growth vs. value” factor.   

Huij and Verbeek find that “growth” funds tend to have positive pricing errors 

(outperform) and “value” funds have negative pricing errors (underperform) after 

the “growth vs. value” factor has been already included in the model.  

 

In our case, we have three investment objectives (G, GI, AG) and although we do 

not explicitly compute the regression coefficients ih  of these groups w.r.t. HML 

factor, it is reasonable to assume that AG consists mostly of “growth” funds 

(small ih ), GI mostly of “value” funds (large ih ) and G is something in between. 

Correspondingly, results from Section 4.6 shows that AG group has unusually 

large (both positive and negative) pricing errors. That can be interpreted as 

follows: the variance of ia  in (4.8.3) depends on the level of ih , i.e. for growth 

funds ( )iVar a  is much larger than for value funds. 
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 While these results are not consistent with those of Huij and Verbeek (who used 

a very different time span and sample of MF), they resemble the mispricing 

anomaly reported in a well known paper of Fama and French (1993). They found 

that their 3-factor model could not properly price the stocks with the smallest 

values of ih , i.e. growth stocks. Those stocks had significantly positive and 

negative pricing errors. The 4-factor Carhart model (tested in a manner similar to 

that of Fama and French) managed to correct that, but in this study we see that a 

similar anomaly reappeared. 

 

One possible explanation, suggested by Huij and Verbeek, is that Carhart model 

uses factors constructed based on a very large subset of US stocks, which may 

not reflect the stock-picking restrictions that apply to MF. Therefore, all these 

findings suggest that creating more adequate benchmarks specifically for MF 

may be justified. 
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CHAPTER 5. SUMMARY AND CONCLUSIONS 

5.1. Summary of Mutual Fund performance results 

In this study, we look into the performance of about 1900 US equity mutual funds 

over the period 1993-2007. MF performance evaluation problem is handled with 

a state-of-the-art local false discovery rate approach combined with the utilization 

of empirical null hypothesis. While trying to extend the prior BSW study, we still 

see it as a reference point because it employs the theoretical null, which is a 

particular case of the empirical null. 

 

It is reassuring that despite the difference in the employed datasets, whenever 

we use the theoretical null (Sections 4.2 and 4.4), our findings are consistent with 

theBSW results. As predicted in Sections 2.2 and 3.2, the introduction of 

empirical null is well grounded. First, we obtain compelling statistical evidence 

(Section 4.3) that the theoretical null is misspecified (overdispersion) and has to 

be replaced with the empirical null. The inference changes dramatically: over 

10% of funds are either skilled or unskilled on pre-expense basis under the 

theoretical null, but under the empirical null that proportion is not distinguishable 

from zero. 

 

The empirical Bayes method also allows us to test the net performance under the 

more powerful composite null that includes both “zero” and underperformance as 

opposed to the simple null of “zero” performance used in BSW and probably all 

other MF studies. Since even under that powerful setting the number of 

outperformers proves neither statistically nor practically significant  (Section 4.5), 

the evidence for the absence of outperformance in MF industry in 1993-2007 is 
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substantially reinforced.  We therefore believe that the outperformance of low 

FDR-based portfolio in BSW study is mostly due to a better performance of MF 

industry prior to 1993.  

 

We use the local false discovery rate method to look into the net performance vs. 

MF investment objective (Section 4.6). We obtain compelling statistical evidence 

that “Aggressive Growth” funds have the largest number of outperformers and 

“Growth and Income” have no outperformers, which is consistent with the 

empirical findings of BSW study.  Unfortunately, even the strongest “Aggressive 

Growth” category fails to produce a practically significant number of identifiable 

winners. 

 

We provide evidence that BSW’s finding of “short-term superior performance” is 

likely to have been an effect of overdispersion, as opposed to the presence of 

true short-term winners. In any event, there is no evidence of “short-term 

outperformance” in our sample (Section 4.7). 

 

If we are interested in practical applications of MF performance evaluation, the 

study has to have a high power. The detailed power analysis showed that 

regardless of whether the utilized null is theoretical or empirical and whether we 

are interested in picking winners or losers, our ability to do so is very limited.  In 

particular, the “top N performers” lists (for both pre-expense and net returns) are 

likely to have a very small proportion of true outperformers. Essentially, in this 

study we can only be good at composing meaningful “worst net performers” lists 

thanks to a high proportion of net underperformers. 

 

Power analysis calculations show that to obtain decent power, each fund in the 

sample has to have an unrealistically long history of returns, well over 15 years.  

It appears that any MF study that is based on monthly data and a similar 

multifactor performance evaluation model is bound to be very underpowered. 
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In Section 4.8 we suggest how we can leverage  Efron’s approach to investigate 

the comparative power of different performance evaluation models, which can be 

an interesting subject for future research. In addition, we discover some evidence 

of the misspecification of the volatility of error terms in Carhart model.  

 

Returning to the question of performance, analysis in Section 4.5 shows that well 

over 70% of funds in the sample have net return alphas that are not 

distinguishable from zero. That proportion will probably remain large even after 

some unconsidered fees (such as loads) are taken into account. Zero alpha 

funds are of value because they essentially provide a free (on average) access to 

the US equity market.  For a risk-neutral investor, zero-alpha funds are superior 

to index funds whose net alphas are negative, although close to zero. To 

estimate the total gain, one may use the study of Elton et al. (2004) who look into 

fifty-two S&P500 index funds over 1996-2001 and find that their average alpha is 

minus 0.41% p.a. 

 

One may try to take a broader view and speculate that even the sizable 

proportion of underperformers (from 18% to 28%, Section 4.5) somehow adds 

value, even though that value does not go to the shareholders directly. Providing 

liquidity to the stock market is the most obvious contribution, but there may be 

others. It is easy to dismiss the equity research performed by MF on the grounds 

that one can do just about as well by indexing. But what if thousands of MF 

equity researchers do a good job of preventing overtly fraudulent companies from 

entering the US stock universe? If that check were not in place, it would be quite 

possible that the US stock market would be far less efficient than it is. 
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5.2. Possible applications outside Mutual Fund industry 

The method of Efron can be also applied to model selection. In particular, 

consider such model selection criterion as AIC: 

ܥܫܣ                                         ൌ 2݇ െ 2ln ሺܮሻ                                        (5.2.1) 

where k is the number of parameters in the model and L is the maximized value 

of likelihood function.  AIC and similar criteria are routinely assumed to be 

deterministic, whereas in fact they are not. It may be the case that, after 

examining a large number of models, the “best  AIC” model is just “lucky”. This 

idea was originally proposed by White(2000), but, as discussed in Section 2.2, 

his direct approach of estimating the dependence structure via bootstrap is 

bound to fail when the number of tests is large. 

 

The models of interest can be fairly similar to each other (e.g., based on almost 

the same set of covariates), and the assumption of mutual independence (or 

weak dependence) of AIC’s is unlikely to hold. Similarly to MF case, explicit 

modeling of high-dimensional dependence structure is far from straightforward.  

Correspondingly, we can apply Efron’s results and gain the same benefits as we  

enjoyed in this study. 

 

Another possible area of application is Statistical Arbitrage. In Avellaneda and 

Lee (2008), the residuals from a multifactor model are integrated (from asset 

returns to asset levels) and then fed into a simple mean-reverting model. The 

goal is to select the stocks whose residuals have good mean-reverting 

properties, that is, the true parameters of the estimated mean-reverting model 

have to belong to a certain range. Given that the number of stocks can be quite 

large, it is nothing but a large-scale multiple inference problem. Yet again, the 

test statistics are certainly dependent but the dependence structure not 

transparent at all. Efron’s approach can help gain an edge here, which may be 

an interesting subject for future research. 
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APPENDIX 

 

The dataset consists of monthly net return data obtained from the Center for 

Research in Security Prices (CRSP) MF database between January 1993 and 

June 2007 (i.e. 174 monthly observations for a fund that was open throughout 

that period). The sample was drawn before the CRSP MF database was re-

engineered on April 21, 2008. 

 

The term “net returns” means that these returns are adjusted for management 

expenses, marketing fees (a.k.a. 12b-1), administration costs and trading costs.  

Management expenses, marketing fees and administration costs comprise the 

fund’s expense ratio (ER).  

 

Besides, there exist other expenses such as load fees. Because they are not 

taken into account in net returns, the performance estimate based on net returns 

is actually an upper bound on what the individual investor can expect. 

 

CRSP MF database consists of all open-ended US mutual funds, but in 

extracting the target sample of actively managed US domestic equity funds the 

following two problems had to be solved: 1) identifying the fund’s investment 

objective; 2) if a fund consists of a few shareclasses, aggregating the returns 

across shareclasses to produce a single time series of returns. In the CRSP 

MFLINKS database, which is essentially a merger of abovementioned CRSP MF 

and so-called Thomson/CDA database, both problems can be solved easily and 

CRSP MFLINKS was the one used in BSW study. Unfortunately, it is very 

expensive and therefore this research relies on CRSP MF database. 

To solve the investment objective problem, the following algorithm (similar to that 

of Pastor(2002)) was implemented: according to two investment objective codes, 
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Strategic Insight Objective (“sp_obj_cd”) and ICDI Objective (“icdi_obj_cd”) the 

funds of interest were selected and placed into subcategories as follows: 

Table A.1 Net returns data for 1911 mutual funds 

 
Assigned subcategory 

 
sp_obj_cd 

 
icdi_obj_cd

Number of 
funds 

    
Small company growth SCG n/a 463 

(SCG)    
    

Other aggressive growth AGG AG, AGG 164 
(OAG)    

    
Growth (G) GRO, GMC LG 886 

    
Growth and Income (GI) GRI GI 398 

    
Total   1911 

 

 

The assignment is performed in top-to-bottom priority, e.g. if a fund has  

sp_obj_cd = AGG and icdi_obj_cd = LG then it is assigned to OAG category. The 

categories were assessed yearly and the overall fund objective was determined 

by the majority.  

 

The following funds were implicitly (via Pastor’s method) or explicitly (using some 

other indicators from CRSP MF) excluded from the sample: 

- International funds 
- Money market funds 
- Bond funds 
- Balanced funds 
- Flexible funds 
- Funds of funds 
- Income funds 
- Index funds 
- Sector stocks (oil, precious metals, etc) funds 
- Preferred stock funds 
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- Funds with no available objective 
- Funds with no available name 
- Funds with zero or not available expense ratio 
- Funds with zero or not available turnover 
- Finds with average yearly TNA less than $5M 

 
To solve the multiple shareclass problem, a separate algorithm was developed 

based on the available shareclass code (“icdi”), date (to account for possible 

renaming) and shareclass name. The goal was to obtain a portfolio code to 

identify the shareclasses belonging to the same MF. Because for the period of 

2003-2007 the true portfolio code (“port_code”) was available, it was possible to 

test the algorithm on a large sample of 29471 shareclass-years and only 51 of 

them (0.17%) were assigned an incorrect portfolio code. Since for the entire 

1993-2007 sample the portfolio code had to be calculated only for 1993-2002, 

the overall error rate is probably less than 0.17%. 

 

If a MF return is missing, the next non-missing return is discarded since it 

corresponds to the cumulative return over the entire missed period (CRSP 

convention). After that, the fund monthly net return was computed by weighting 

the net return of each shareclass by its monthly total net asset value (“mtna”). 

Each fund was required to have at least 50 (not necessarily consecutive) monthly 

returns. 

 

The pre-expense MF data were obtained based on the sample of 1911 funds 

above. For each MF, its annual expense ratio was computed as a TNA-weighted 

average of expense ratios of its shareclasses. Then, for each month, 1/12 of the 

annual expense ratio was added to the MF monthly net return resulting in the 

return that would be obtained after trading costs but before all costs included in 

the expense ratio. Funds with less than 50 monthly observations were dropped.  
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Table A.2 Pre-expense data returns data for 1876 mutual funds 

 
Assigned subcategory 

 
sp_obj_cd 

 
icdi_obj_cd

Number of 
funds 

    
Small company growth SCG n/a 457 

(SCG)    
    

Other aggressive growth AGG AG, AGG 161 
(OAG)    

    
Growth (G) GRO, GMC LG 871 

    
Growth and Income (GI) GRI GI 387 

    
Total   1876 

 

 

Because of some missing expense ratio information, the pre-expense sample 

includes 1876 funds (Table A.2). For both pre-expense and net returns data, the 

average number of observations per mutual fund is about 129 (10 3/4 years). 
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