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ABSTRACT

Tuzov, Nikita V. Ph.D., Purdue University, May, 2009. Mutual Fund Performance
Evaluation Methodology and Local False Discovery Rate Approach. Major
Professor: Frederi Viens.

The history of applying statistical simultaneous inference methods to a financial
problem of mutual fund performance evaluation is very short. A major problem in
applying simultaneous inference methods is the non-trivial dependence among
the utilized test statistics. When the number of tests is large, the explicit modeling
of dependence structure becomes difficult. As a result, assumptions that are too
restrictive are made, which can substantially bias the inference. In addition, the
initial performance evaluation model itself can be misspecified and thus distort
the results. For instance, the recent study of Barras, Scaillet and Wermers (2008)
utilizes a multiple inference procedure with oversimplifying assumptions and,

therefore, is prone to both sources of bias.

Another under-investigated issue is the statistical power in a typical mutual fund
study. The study of Kothari and Warner (2001) makes some progress but their

research is not based on real mutual fund data.

This paper catches up with the recent developments in Statistics by applying a
state-of-the-art “empirical null hypothesis” concept combined with the” local false
discovery rate” method, developed by Efron in 2001-2007. That offers a viable
alternative to the explicit modeling of high-dimensional dependence structure. In
addition, the findings of Efron suggest that the new procedure may account for

the performance evaluation model misspecification. The new method also



Vi

provides informative power measures and an elegant way of comparing the

performance of mutual fund subgroups.

A comprehensive investigation is performed for about 1900 actively managed US
equity mutual funds observed monthly between 1993 and 2007. The results
provide a significant extension to the findings of Barras et al. whose method can
be seen as a restricted version of the method in this study. It is shown that the

version of Barras et al. has both statistically and practically significant bias.

We conclude that, unfortunately, Barras et al. are too optimistic about the
performance of US mutual funds. In addition, a detailed power analysis reveals
that a typical mutual fund study with monthly dataset and multifactor performance
evaluation model has a very low power. Even when outperformers are present in

the sample, it usually requires too many years of data to single them out.



CHAPTER 1. INTRODUCTION

1.1. Objectives
The studies of portfolio manager performance evaluation and, in particular,

performance of mutual funds (later referred to as MF), go back as much as 40
years. Over these years, a typical agenda for a MF performance study included

the following steps:

1) Selecting performance measure(s);

2) Estimating performance for each MF individually;

3) Interpreting the results. In the MF context, this usually involves an attempt
to find association between the performance and fund characteristics such
as the fund’s investment objective, its turnover, total net asset value
(TNA), and so on. The persistence of performance (e.g., if past winners

continue to win in the future) is also of interest.

The issues 1)-3) have been addressed thoroughly by a large number of financial
researchers. The development of more adequate performance measures and
utilization of higher quality datasets can be traced through the works of Jensen
(1968), Ippolito (1989), Elton et al. (1993), Hendricks et al. (1993), Ferson and
Schadt (1996), Carhart (1997), Daniel et al. (1997), Chen et al. (2000), Wermers
(2000) and many others. A discussion of recent results and an extensive

reference list can be found in Nitzsche et al. (2006).

The issue of simultaneous testing, on the other hand, has received significantly

less attention. Its importance can be illustrated as follows: suppose that we want



to evaluate the performance of m MF managers, of whom m,, do not perform

well. The performance is measured by a certain test statistic obtained from a
performance evaluation model, e.g. Carhart alpha. The corresponding p-value

under the null hypothesis of “no outperformance” is also provided. Testing each

manager separately at the significance level & one should expect to get om,

“false discoveries”, i.e. the cases where the null hypothesis of “no
outperformance” is rejected incorrectly. To distinguish between true and false

discoveries, a multiple inference procedure has to be utilized.

However, the application of any multiple inference procedure is far from
straightforward when a large number of test statistics have a non-trivial
dependence structure and /or the model used to obtain those statistics is
misspecified in the first place. The most recent MF study of Barras, Scaillet and
Wermers (2008) does employ a multiple inference procedure but hardly

addresses either of the abovementioned issues.

Yet another poorly explored but important question is the statistical power of the
performance evaluation model. In a typical MF study, no power diagnostics are
provided. The study of Kothari and Warner (2001) tries to shed some light on the
issue but does not appear exhaustive, especially given that it is not based on the
real MF data.

The overall objective of this research is to address the questions of multiplicity
and power through a method that accounts for the high-dimensional dependence
structure of test statistics and a possible misspecification of the performance
evaluation model. These real data features have to be taken into account without
imposing oversimplifying assumptions. In that sense, a new approach developed
by Efron in 2001-2007 appears to be a viable option. The original purpose of
Efron’s method was to handle complex multiple testing problems of Statistical

Biology. It has never been used for financial studies before, but, as shown below,



it allows us, at least to a certain extent, to address the issues of interest outlined

above.

1.2. Organization
This dissertation has five chapters. This chapter (Chapter 1) provides a brief

introduction and outlines the research objectives. Chapter 2 provides an
overview of simultaneous inference techniques and their application to portfolio
manager performance evaluation with the stress on assumption sensitivity and
practical implementation issues. Chapter 3 describes the essence and
advantages of Efron’s method. Chapter 4 looks into the performance evaluation
of a large sample of US mutual funds from this new angle. Chapter 5
summarizes the findings and suggests further financial applications of Efron’s

technique.



CHAPTER 2. SIMULTANEOUS INFERENCE AND ITS FINANCIAL
APPLICATIONS

2.1. Possible approaches to simultaneous inference

Let us consider the following framework. Suppose we need to

perform m hypothesis tests of the form:

HZO VS. Hla ,lzl,m, (211)

P= (PO, P?) - a random vector of p-values corresponding
to null and alternative hypotheses;
my - unknown number of null cases;
V' - (random & unobserved) number of rejected true null hypotheses
or "false discoveries"
S - (random & unobserved) number of rejected non-true null hypotheses
V+S =R - (random & observed) number of all rejections

Q =V /max(R, 1) - proportion of rejected true nulls among all rejections

The following quantities may be of interest:

FDR = E[Q] - expected value of Q called "False Discovery Rate" (2.1.2)
PFER = E[V] - expected number of "false discoveries"

PCER = E[V]/ m - "Per Comparison Error Rate"

FWER =P{V =1 } - "Family-Wise Error Rate"

k-FWER =P{V > k} - "k-Family-Wise Error Rate"

Any approach, FDR, FWER, PCER or PFER can be used to perform

simultaneous inference (Dudoit et al. (2003)), but the choice depends on a



articular application. In the realm of financial performance evaluation, a FWER
(based on Bonferroni method) is used by Ferson and Schadt (1996).

In the same context, Romano and Wolf (2005) and Romano et al. (2008)
illustrate the control of FWER and k-FWER based on a number of methods,

including their own StepM procedure.

A typical part of a MF study is to try to construct an outperforming portfolio of MF.
The portfolio has to consist of presumably outperforming mutual funds, but it is
admissible to have a relatively small proportion of non-performing funds as long
as the overall performance is good. Let us consider the choice among different

quantities in (2.1.2) in this context.

FWER usage is justified when a conclusion drawn from m tests is erroneous as
soon as one (or more) out of m individual inferences is erroneous. Therefore,
FWER is conservative and tends to have a low power, especially when m is
large. In the abovementioned context, it is not crucial to require that every single
one of the identified good performers is a genuine good performer. That rules out

FWER as a tool of choice.

Likewise, we are not interested in controlling the absolute number of false
discoveries V' in terms of its average (PFER) or the probability that V" exceeds a
certain threshold (k-FWER). PCER is more relevant, but the false discovery
proportion, Q, has a direct interpretation as the proportion of useless funds in the
outperforming portfolio, so it makes sense to control its expected value, FDR.

Another meaningful alternative to FDR is to control not FDR = E[Q] but a certain

quantile of Q itself (Romano et al. (2008)), but here we intend to focus on FDR.

The p-values in (2.1.1) can be derived from any particular MF performance
evaluation model. Moreover, several models can be used simultaneously if, for

instance, it is believed that different types of mutual funds should be evaluated



differently. For equity mutual funds, the four-factor Carhart (1997) performance

evaluation model is as follows:

r. =a.+b.-r  +s.-r +h, r +m.-r +e, (21.3)
it i i m,t i smb,t i hml,t I mom,t it
t=1,..T

i=1,..m

where 7; , is the time period ¢ excess return over the risk-free rate for
the MF number 1 ; Yms is the excess return on the overall equity market portfolio;

Vombia> Timie> Tmom, @re the returns on so-called factor portfolios for size, book-to-

sm

market, and momentum factors (all can be obtained from CRSP database, see

Appendix); &;, is the residual error term. All returns are observed and the

quantities¢,, b,, s,, h., m are estimated through multiple linear regression (see

Section 4.1).

The parameter ¢, is measured in % per time period ¢ (usually one month) and
its value shows by how much per one time period the fund outperforms (¢, >0)

or underperforms (&, <0) the benchmark model. Such funds will also be called

“skilled” and “unskilled”, respectively.

The m p-values in (2.1.1) may correspond to one-sided hypotheses

or two-sided hypotheses

Hloal:() VS. Hlaalio (215)

One-sided testing corresponds to identifying significantly good performers and
two-sided testing corresponds to identifying significantly “non-zero” (both good

and bad) performers.



In a recent series of working papers made public between 2005 and 2008,
Barras, Scaillet and Wermers (later referred to as BSW) utilize FDR approach
and four-factor Carhart model to estimate the performance of 2076 US equity
mutual funds over the period 1975-2006. BSW paper will be the main reference
point for our study. In another working paper, Cuthbertson et al. (2008B) borrows
the method developed in BSW study to perform a similar analysis of UK mutual
funds. Likewise, the very same method is used for German mutual funds by
Otamendi et al. (2008).

In order to extend BSW study, let us overview the assumptions underlying the

FDR method and look into some issues pertaining to its practical implementation.

2.2. Practical restrictions of FDR-based methods

FDR method was properly introduced by Benjamini and Hochberg (1995) who

produced the following result.

Assumption 1. The components of vector Plare independent and for any null

p-value p,

P{p,<u}<u Vue(0,])

Theorem 1. Specify a fixed value ¢ € (O, 1). Under Assumption 1,

m (2.2.1)
FDR=E[0]<—2g<q
m
if all the hypotheses with p-values less than y are rejected. The cutoff y is

determined according to a certain data-driven stepwise procedure. It is also

possible to solve an equivalent “inverse” problem: fix the test size y and
determine the minimal ¢ such that (2.2.1) holds when all hypotheses with p-

values less than y are rejected.



An immediate extension of Theorem 1 is to try to estimate m,,, the unknown

number of null cases, in order to make the procedure more powerful. Benjamini
and Hochberg (2000) proposed a method (extended in Benjamini et al. (2006))

that essentially relies on one more assumption:

Assumption 2. The marginal distribution of each component
of vector P? is U(0, 1).

Thus, under Assumptions 1 and 2, the components of vector P’ are i.i.d. U(0,1)

which is called “null distribution”.

Then, consider the following subset of observed p-values, {pl., i=1,_m}:

py=ip;:ip; >4 §, A€ (0])

(2.2.2)

For A large enough, P, will consist mostly of p-values corresponding to true
nulls, i.e. the points in P, will approximately have U(A, 1) distribution. This fact
can be used to estimate A : e.g., in the histogram of p-values, the plot should

“level off” to the right of a certain point on the horizontal axis, and that point is /i

. Then the estimate of m,, is:

i, = (number of pointsin p,)/(1— A) (2.2.3)

The spline estimator of Storey and Tibshirani (2003) and the bootstrap estimator
of Storey, Taylor and Siegmund (2004) (the latter used in BSW) are based on the
same two assumptions. Therefore, they may fail to work as soon as Assumption

1 or Assumption 2 does not hold.

If Assumption 2 does not hold (e.g., in the case of composite null hypothesis

such as Hf 0, <0 or a discrete distribution of p-values) the FDR control property

(2.2.1) is still valid (Benjamini and Yekutieli (2001)). In that case, given that m,, is



close tom, one could just take m, = m without having to estimate 71, and that

is not going to result in much power loss. Besides, Pounds and Cheng (2006)

propose a way of estimating m,, that works for discrete p-values and the

composite null.

If the independence requirement in Assumption 1 is violated, however, the FDR
control property (2.2.1) is no longer valid. For that reason, much effort has been

invested into adapting the FDR-based methods for the case of dependence

among the components of P°.

Here we would like make a clarification as to the terminology used. For a
multidimensional vector with m dependent components, the joint distribution is
defined by a c.d.f. that maps R” into [0; 1]. It can be simplified when the
distribution is assumed in a certain parametric form, e.g. for a multivariate normal
we only need to know the mean and variance-covariance matrix. Alternatively,
one may believe that the mean and variance somehow deliver a good
approximation to the true joint distribution which, strictly speaking, is not normal.
For the purpose of multiple inference, it is fairy common to assume that it is
enough to know the variance-covariance matrix of test statistics. In the
subsequent analysis, we are going to use the terms “dependence structure”,
“‘dependence”, “correlation structure”, “variance-covariance matrix”, “joint
distribution” interchangeably. For instance, in the case of Carhart model, the
dependence structure of test statistics is determined by the mXxm variance-
covariance matrix of error terms. Below we are going to look into a few previously

used approaches to working with dependent tests statistics.

The first and simplest way to do that is a straightforward modification of the

original FDR procedure that works for any dependence structure (Benjamini and
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Yekutieli (2001)). However, the corresponding power loss in a large-scale

simultaneous testing situation is quite substantial.

In the same study, they show that FDR procedure is still adequate if the vector

P° has so-called “positive dependency on each one from a subset” structure
(PRDS). For instance, assume that the vector of test statistics is multivariate

normal N(u,X). Then, if each null statistic has a non-negative correlation with

any other statistic, the joint distribution is PRDS. The verification of PRDS
property is not a problem in some controlled experiments, where the design itself
provides ways to simplify the dependence structure. For example, in clinical trials
the researcher often has enough grounds to consider the subjects independent
of each other. In fact, all examples of applied problems in Benjamini and Yekutieli
(2001)are carefully designed experiments. On the other hand, MF study is an
observational study where we have no luxury of simplifying the dependence
through experimental design. Even if we are willing to assume that the joint
distribution of test statistics is multivariate normal, the belief that each and every

null statistic is non-negatively correlated with the rest (m - 1) statistics appears

too restrictive. In addition, we cannot attain greater power by estimating m,,

since it is not clear how to do that when the statistics are PRDS-dependent.

Another approach to dependency is to try to estimate the joint distribution of

components of P° non-parametrically. In particular, in Yekutieli and Benjamini
(1999) a bootstrap procedure generates m-dimensional samples of p-values
under “complete null” setting, i.e. when all m hypotheses are null. In MF
performance evaluation context , Kosowski et al. (2006) introduce so-called
“cross-sectional bootstrap”. Essentially, they estimate the joint distribution of

more than two thousand «;'s via resampling under “complete null” (with T being

about 300). The study of Cuthbertson et al. (2008A) borrows this approach to
apply it to about 900 UK mutual funds (with T about 340).
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In the realm of Econometrics, a similar resampling scheme was proposed in the
well-known paper of White (2000), whose approach is developed in Romano and
Wolf (2005) and Romano et al. (2007, 2008). The latter develop a procedure
called StepM, which can be used to control FWER, FWER-k, FDR and even
quantiles of False Discovery Proportion (denoted Q in (2.1.1)). Also, Romano et
al. (2008) mention that the StepM procedure is similar to the approach developed
for biostatistical purposes by van der Laan et al. in a number of papers, e.g. van
der Laan and Hubbard (2005).

At this point, non-parametric estimation of the dependence structure appears to
be a fairly reasonable approach. The only flaw of bootstrap approach is that MF
time series are usually of different length, and that can render the estimated
variance-covariance matrix non-p.s.d. For instance, that can happen when we
apply the bootstrap approach of White (2000). We shall say more about these

methods in a few paragraphs.

The third approach is to model the dependence structure parametrically. In case
of a multifactor performance evaluation model such as that of Carhart, it implies
proposing a few “residual factors” that presumably account for all or almost all of
the cross-sectional dependence of error terms. The residual factors can be
assigned based on common economical sense, e.g., one may assume that error
terms coming from MF with the same investment objective are correlated with the
same correlation coefficient. It is also possible to derive the residual factors from
the data using one of many available “dimension reduction” techniques. Let us
describe one of these methods called Principal Component Analysis (PCA),
which is also closely related to so-called Ridge Regression and LASSO
Regression. Suppose we observe the data matrix X of size mxT' . For instance,
under Carhart ‘s framework, X corresponds to the matrix of residual terms

(assumed centered).
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Then, the estimate of residual variance-covariance matrix is X' = XX . The
estimate, X', is not of full rank because m >T . The purpose of PCA is to identify

a relatively small number, p < T, of linear combinations of columns of X and use

these combinations to approximate X'. It can be shown (Hastie et al. (2001)) that
the most useful linear combinations correspond to the eigenvectors (“principal
components”) of X' that have the largest eigenvalues. The p most useful
eigenvectors can be found from the eigen decomposition of ' and then they
serve as an input to form the p “residual factors”. The factors are used to create
¥?, an approximation to X' . A successful “dimension reduction” means that >*is

a good approximation to X' with p being much less than T.

For example, Jones and Shanken (2005) utilize a combination of “economically
sensible” residual factors (that correspond to MF investment objectives)

and PCA-based residual factors.

However, one should be aware that the residual correlation matrix in (2.1.3) is
not constant over time. For instance, the correlation between two otherwise
weakly correlated equity MF goes up during the so-called “flight-to-quality”
periods. The following example, taken from Avellaneda and Lee (2008),
illustrates the “flight-to-quality” effect. They take a large number of US stocks
observed daily between October 2002 and February 2008. The return correlation
matrix is computed based on 1 year (252 business days) rolling window. They
perform PCA and estimate the number of principal components that are

necessary to explain 55% of the variance in the system.
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Figure 2..2.1 Market volatility index (blue) and the number of principal
components (brown) required to capture 55% of total variance in US stock
returns

The blue ragged outline on Figure 2.2.1 shows the market volatility index (VIX)
with distinct peaks corresponding to the burst of Internet bubble around 2002 a
the subprime crisis of 2007-2008. The red curve shows the number of principal

components that is necessary to capture 55% of total variance in the system.

nd

Apparently, during the “good times” of 2004-2006, the number of components is

much higher (over 25) than it is during the “bad times” (between 7 and 15).

The “flight-to-quality” suggests that, in a multifactor model with a fixed number of

factors, the cross-sectional dependence structure of the residuals can change

drastically over time. All other things being equal, the overall residual variance in

(2.1.3) is a lot smaller during the “bad” times when all equities behave more or

less alike.
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For a MF dataset, our concern is that, even after dimension reduction, the
number of factor in the model is still large compared to the number of
observations. For instance, if we introduce the latent factors of Jones and
Shanken (2005) into (2.1.3) we will end up having to estimate over 13 regression
coefficients with an average number of observations equal to 129. Even if we
assume that the dimension reduction is unbiased (X’is an unbiased estimator of
>'), the estimate, x*, will still have a lot of variance. Consider also that the actual
number of factors can be as large as 25 (Figure 2.2.1) and / or the loadings on
residual factors are not constant over time (i.e., the residual correlation matrix is
time-dependent). One may also take into account that, as mentioned in Section
2.1, a few different performance evaluation models can be used simultaneously,
which will significantly complicate the explicit modeling of the dependence

structure.

COhservarions
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Figure 2.2.2 Estimation of the dependence structure for the purpose of multiple
inference

Figure 2.2.2 dispalys a general scheme for the estimation of the dependence
structure. For instance, the bootstrap approach of White (2000) corresponds to

using the “crude” estimate, *'. Jones and Shanken (2005) take one more step,
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dimension reduction, and obtain PCA-based x’(even though they do not use it

for the purpose of multiple testing). It is also possible to use Rigde Regression
based X’ = (XX'+aX)where [ is the identity matrix and wis a positive smoothing

parameter. For PCA, the smoothing parameter is the number of retained principal

components, p.

Unfortunately, both parametric and non-parametric modeling of the dependence
structure appear to have a fundamental problem: they only work when the
utilized estimate, be it ' or ¥*, is a “good” estimate of the true variance-
covariance matrix, . To put it in strict terms, the asymptotic results of
Yekutieli and Benjamini (1999) and White (2000) state that the control of FDR is

attained only asymptotically, for afixed mand T —

To look into this in more detail, let us consider White (2000) whose non-
parametric approach is the foundation of so-called StepM procedure developed
later by Romano and Wolf (2005) and Romano et al. (2008). White (2000)
considers the following problem: suppose there are m forecasting strategies. For
each strategy, its predictions are compared to those of a “naive” strategy. The
corresponding statistic is greater than zero when the “naive” strategy is worse.
For the best strategy (with the largest statistic), what is its p-value after

multiplicity adjustment?

Suppose the statistics are multivariate normal with a mXxXm variance-covariance
matrix Q. Then we can get the desired p-value based on the distribution of the
extreme value of m-dimensional N(0,Q) vector. Note that even for a givenQ, the
analytical expression for the distribution of extreme value is unknown. However,

the proposed bootstrap procedure conveniently provides both Q and the cdf

estimate for the extreme value.
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This reasoning makes it perfectly clear that one assumes that there are enough
data to obtain a good estimate of mXm variance-covariance matrix Q. All
theoretical results are derived for a fixed number of tests and large sample size
(mis fixed and T — « in (2.1.3)), but in practice it is obvious that the “large
enough” value of T depends on the value of m. In particular, it certainly makes
little sense to rely on asymptotic results unless T is many times as large as m.
Unfortunately, this crucial rule of thumb is obscured in practice because the
bootstrap in StepM and similar procedures do not directly involve the estimation
of variance-covariance matrix and, technically, can produce a result even when

m is larger than T.

Ths “size problem” by itself has received lots of attention. Fan et al. (2008)
provide simulation results that demonstrate the inadequacy of a variance-
covariance matrix estimator when the data are insufficient. Romano et al. (2008)
admit that the StepM procedure is similar to the approach developed in
BioStatistics by Van der Laan et al. On the other hand, Efron (2006D, Section 6)
refers to the work of van der Laan et al. to emphasize that the corresponding
results are applicable only asymptotically and are of very limited use for a typical

large-scale simultaneous inference problem.

When the data are insufficient, the researcher often has no choice but to hope
that, somehow, his estimate of the dependence structure is still not far from the
truth. For instance, Yekutieli and Benjamini (1999) give a weather analysis
example where m = 1977 and T = 39. Remarkably, when they used another,
simulated dataset to show that FDR is controlled they have to setm =40and T
in between 200 and 1000.

In the context of MF studies, we have m about 2000 and T between 100 and 300,
which amounts to a severe “size problem”. Note that while the rank of =’ may be

anywhere between 300 and 2000, the rank of 'is always under 300. That is, we
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know so little about x’that we cannot even provide a reasonable estimate of its
rank, let alone more delicate statistical properties such as PRDS. The various
dimension reduction techniques allow us to “reduce the dimension” of the
available data (i.e., use the available data efficiently), but they do not solve the

“size problem”.

Yet another way to handle the dependence is the assumption of “weak
dependence” outlined in Storey, Taylor, and Siegmund (2004), Storey and
Tibshirani (2003), and Storey (2003). When the assumption is satisfied, the
p-values are treated as if independent and the (asymptotic) FDR control still

takes place.

Unfortunately, there is no statistical procedure to test for weak dependence, even
though one could make a qualitative argument that it holds for particular
datasets. For instance, it is likely to hold when the test statistics are dependent (if
at all) within small groups with the groups being independent of each other. In
particular, Storey and Tibshirani (2003) provide a qualitative argument for weak
dependence assumption being true for some (but not all) microarray gene-
expression datasets: genes behave dependently in “pathways” (small groups)
with pathways being independent of each other. To demonstrate FDR control,
Storey, Taylor, and Siegmund (2004) give a simulated example with m = 3000

and the group size of 10. They also show that under weak dependence FDR can

be controlled for any fixed value of A in (2.2.3). The choice of optimal Aisa
bias-variance tradeoff problem which they solve via bootstrapping from the m p-
values. Resampling from a set of (weakly) dependent p-values is a questionable

technique and no analytical justification for that was ever developed; still, some

numerical examples show that the bootstrap estimation of A is robust under

“small group” type of weak dependence (Storey and Tibshirani (2001)).



18

Correspondingly, the application of FDR in BSW study rests on the assumption

of weak dependence for the purpose of both FDR control and the estimation of

the optimal A via bootstrap method. The same is true for the study of Otamendi
et al. (2008), which is based on pFDR, a slight modification of FDR introduced in
Storey (2002).

At first sight, it seems reasonable for BSW to assume that MF operate in small
independent groups and the dependence between the estimated performance
measures (&,'s in this case), if any, can exist only within a group. However,
there are certain reservations to utilizing this convenient assumption. As stated
in BSW study itself, MF may exhibit correlated trading behaviors in large groups
that can be caused, for instance, by being exposed to the same industrial sector
or “herding” into particular stock(s). In the MF context, a natural candidate for a
“small group” of funds is a fund family, with families being hopefully independent
of each other. However, the findings of Wermers (1999) suggest that “herding” is
not significantly less among different fund families than it is among funds within a
family. While the absolute magnitude of “herding” is low, its qualitative nature
shows that common sense-based qualitative assumptions w.r.t. the dependence

structure may be not true at all.

Note that the mutual independence of ¢ 's and their p,'s is in no way implied by

the model (2.1.3) itself. When a multifactor asset pricing model is perfectly

specified, the asset returns are not forecastable, meaning that the residual terms

€;, are not serially correlated. In that case, &;, can still be very well correlated
cross-sectionally, i.e. across i =1,m for a fixed ¢ (see Cochrane (2005)). It

means that in case of the perfectly specified and estimated model the null p-

values p,'s can marginally follow the pre-specified null distribution (e.g., U(0,1))

and be cross-sectionally correlated at the same time.
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BSW put a sizable effort into justifying the weak dependence assumption for their
study. First of all, BSW argue that the funds’ alphas are not very dependent
because 15% of the fund histories in their sample do not overlap in time, and on

average only 55% of return observations overlap. For funds i and j, non-

overlapping of returns means that, given model (2.1.3), the estimates ¢ and &,
and the corresponding p,, p; are not correlated (under another mute assumption
that there is no serial correlation in error terms &;, and ;). How much

independence does the “lack of overlap” introduce? Compare this to an example
of a weakly dependent structure with m=3000 and the group size of 10 in Storey,
Taylor, and Siegmund (2004). If we translate it into MF setting with m=2000,
where the degree of independence is associated with the absence of overlap, we
obtain the following: the entire time period should be divided into subintervals
with only 10 funds observed on each subinterval. Hence, it requires 200
subintervals. Given that an average fund is observed for over 10 years, it implies
the study’s time span has to be over 2000 years. In reality, BSW data span only
32 years, which makes the “lack of overlap” argument doubtful. Besides, for a
shorter time period (like in this study) the overlap has to be much greater than
55% while the number of funds is about the same. In fact, our data span 14 %

years with an average of 10 % return-years per fund.

BSW (05/2007 version) present two simulated examples to show that their
multiple inference procedure works even when ¢ 's have a non-trivial (but pre-

specified) correlation structure. The first example is similar to the
abovementioned weak / “small group” dependence simulation study of Storey
and Tibshirani (2001). In particular, the simulated correlation matrix in BSW
example has 30 non-zero blocks that comprise only about 5% of all elements in
the correlation matrix. Therefore, it is not surprising that BSW multiple testing
procedure (which ignores dependence) still produces reasonable multiple

inference results.
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The second example is based on the method of including the “residual factors” in
the right-hand side of performance evaluation model (2.1.3) for the purpose of
“‘whitening” the residual terms cross-sectionally. These factors in BSW are

indicators of whether the fund has a zero, positive, or negative performance.

Since the latent residual structure in BSW was simulated, there is no proof that
the real structure is in any way close to it. Note that if we were to try to prove
that, for instance, the correlation coefficients are the same within the same
investment objective, we would have deal with a much larger-dimensional
problem. When we test that all «'s of 100 MF of the same investment objective

are equal to the same constant (such as zero), we have to know the dependence

structure for the corresponding vector of estimates, (&, i =1,100). It is usually

approximated by 100x100variance-covariance matrix. Now, suppose that we also
want to test
1P, = ] = i 224
HO"Oij p, 1,j=1100 i+ j ( )

where p, is the correlation between ¢,, and ¢;, in (2.1.3) (it is assumed constant

w.r.t. time). Similarly, (2.2.4) is a joint hypothesis test w.r.t. 4950 fixed
parameters. In order to do it properly, one would have to be given a 4950x4950

variance-covariance matrix for the vector(p, ;, i # j).

In yet another example, BSW (05/2008 version) actually try to estimate the
residual variance-covariance matrix of size 898*898 based on 898 funds
observed for 60 months (2002-2006) in order to use it for dependence sensitivity
analysis. The rank of such cross-product matrix is 60 at most and it cannot
provide a more or less good estimate of the variance-covariance matrix. It would
have taken at least 898 months of data (almost 75 years) just to make the
898*898 cross-product matrix non-singular. That can only be simplified via
imposing some restrictions on the correlation structure which takes us back to

the examples above.
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For what it is worth, in that estimated matrix the pairwise correlation term has
25%, 50% and 75% quantiles equal to —0.09, 0.05, 0.19 with the mean of 0.08
(not too far from zero), which is another argument used in BSW to justify the
weak dependence assumption. However, the seemingly close-to-zero range of
pairwise correlation does not necessarily imply the weak dependence property.

This particular issue will be considered in more detail in Section 3.2.

Therefore, a large-scale MF study being a high-dimensional observational study,
the weak dependence property inevitably implies some rather questionable
and/or hard-to-check assumptions about the data dependence structure. Explicit
modeling of the high-dimensional correlation structure is not feasible either ,
unless, yet again, one is willing to tolerate a number of probably unrealistic
assumptions. Moreover, even fairly restrictive assumptions may not reduce the
number of estimated parameters to the point where the amount of available data

appears enough for estimation.

There is one more source of error in a multiple inference procedure: even when

independence or small-group dependence hold in theory, the multiple test
procedure works with the estimated ¢&;,'s and p,'s . The estimated p,'s can

correspond to null cases and at the same time they may deviate from the
assumed null distribution. Efron (2006C) describes some “technical” causes of
why that can happen in microarray studies. It is likely to take place when the
model used to obtain the individual test statistics and p-values is misspecified
and/or improperly estimated in some way. That can occur in MF studies just as

well.

Possible sources of misspecification in a model like (2.1.3) are: using an
inappropriate correlation structure for the error terms; failing to account for the
temporal heteroskedasticity of the error terms; applying asymptotically valid

results when the sample size (T in 2.1.3) is not large enough. For instance,
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omitting an important (but unknown) factor in the right-hand side of the model
can induce the serial correlation of error terms which may remain unaccounted
for. It is also likely to cause dependence in estimated performance measures
across all funds that have significant loadings on the omitted factor (BSW). The
number of such funds can be quite large. Applying robust estimation methods
(e.g., non-parametric bootstrap) can take care of some of these problems, but

such methods are not bulletproof.

If any of these inconsistencies take place, they may result in the marginal
distributions of null p.'s being far away from U(0,1). Even if such p.'s are
independent, their ensemble is not going to behave like i.i.d. U(0, 1). In some
cases, their behavior resembles that of dependent and marginally U(0, 1) p,'s
(see Section 3.2 for examples). Thus, as a result of model misspecification, even

independent p.'s can be seen as dependent “in effect”. In practice, both

“genuine” dependence and the misspecification of marginal distribution are likely
to be present. While one can try to ignore the former via justifying the
independence / weak dependence assumption, the contribution of the latter is

impossible to assess a priori, at least in a large-scale situation.

There is no argument that knowing the dependence structure of test statistics is
sufficient to perform a multiple inference procedure. But what if it is not
necessary? Given the “size problem” in MF studies, it would be very desirable to
avoid the the modeling of high-dimensional dependence structure. The next
section introduces a novel approach to large-scale simultaneous inference that
can help us circumvent both the weak dependence assumption and the explicit

modeling of high-dimensional correlation structure.
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CHAPTER 3. LOCAL FALSE DISCOVERY RATE

3.1. Local false discovery rate: definition and properties

Suppose that for the model (2.1.3) we compute the individual one-sided p-values
for the test:

The obtained p-values, {p,}, i=1,m are converted to normal z-scores:

z,=0"(1-p) (3.1.2)
where @7'()) is the inverse normal cdf. For instance, p, = 0.025 corresponds to
the fund that is likely to outperform and its z, will be 1.96; if, on the other hand,
p;, = 0.975 (obtained from a negative «;) the fund is likely to underperform and

its z, will be -1.96.

Efron (2004) proposed the following structural model that ties together & and z
values:
o~ g(o) (3.1.3)
z|la~ N(a,07)
f(2)=g(@) * N(0,0)
where g(«) is an arbitrary distribution and “ * ” denotes convolution. Our interest
is in testing some hypothesis about ¢/, and the support of g(a) can be arbitrarily

split into two disjoint “null” and “non-null” sets. Then, g(«) itself will be a sum of

two terms:
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g(o)=pyg,(o)+ p g () (3.1.4)
where
g,(a)—"null" component
g,(a)—="non-null" component
P, =P, {o is null}
p, = B, {o 1s non-null}
potp =1
In terms of corresponding z-values this will result in:
f,(z)=g,*N(0,0;) - null density of z's (3.1.5)
fi(z)=g *N(0,0;) -non-null density of z's
f(z)=p,f,(2)+ p, f,(2) - mixture density of Z's
For instance, the “null” set can consist of one point {&=0} (g(a) does not have

to be absolutely continuous) and the “non-null” set is the corresponding

complement {a #0}. Also, p,=F,{or=0} and under o, =1 the null subdensity
fo(2) is N(0,1). This particular case of the structural model corresponds to the
setting from Section 2.2: p, is the same as m,/m and if all null p-values are

i.i.d. U(0,1), the corresponding null density f;(z) is ®'(U(0,1)) which is nothing
but N(0,1).

Our inference will utilize the Bayesian concept of “local false discovery rate” (fdr)
introduced in Efron (2001). It can be interpreted as a “local” version of Benjamini
and Hochberg’s FDR and it is defined as follows:

pofo(z) (3.1.6)

f(2)

Local fdr, fdr(z), is the posterior probability that the test with corresponding z-

fdr(z) = P{caseiisnull |z =z} =

score came from the null distribution f,(z). One can also define

poFy(2) (3.1.7)

Fdr(z)=P{caseiisnull |z, <z} = “Flo)
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where F and F are cdf's corresponding to f, and f. Fdr(z) is a closely

related Bayesian version of Benjamini and Hochberg’s FDR and the connection
between the two is detailed in Efron(2002). Both Fdr and FDR are of tail-area

type; in particular,

z (1 Ndt (3.1.8)
7)= J—wf: r;()tj)[ ;) =E [ fdr(0)|t<2]

Thus, FDR and Fdr characterize the average false discovery rate within a tail

Fdr(

region. On the other hand, fdr has a local nature and provides more precision in

interpreting Z; 's on an individual basis which is an obvious advantage of fdr.

The second advantage of this approach is that neither (3.1.6) nor (3.1.7) assume
any particular dependence structure of z’s such as PRDS of Benjamini and
Yekutieli (2001) or the weak dependence assumption of Storey, Taylor, and
Siegmund (2004) and BSW.

There are two ways that such flexibility is paid for: first, (3.1.6) is “one-at-a-time”

statement: if we are given fdr(z) and then observe two dependent values z, and

z,, fdr(z)) is not conditioned on z, and, if the probability structure of the entire

vector Z were known, then P{ case 1 is null | Z =7} could be very different

from fdr(z,) (Efron (2004)). Therefore, local fdr method is appropriate for the

applications where the entire probability structure is not only unknown but also
quite unknowable (Efron (2005), Section 2). In the context of a large-scale MF
study, the estimation of a high-dimensional dependence structure is severely

hindered by the lack of data (Section 2.2) and that is the reason why the word

“‘unknowable” seems to apply to it quite well.



26

Secondly, the local fdr approach is that of “empirical Bayes” kind: in (3.1.5) we do
not pre-specify the mixture density f(z) (which is an advantage) because, unlike
in the “classical Bayes” setting, f(z) is estimated from the data. If the numerator
in (3.1.6 — 3.1.7) is somehow pre-specified, all we need is a consistent estimator
of f(z). This, however, adds a certain amount variability to our estimates of fdr(z)
and Fdr(z). This is especially relevant for fdr(z) because in order to estimate f(z)

properly one needs a large number of observations (at least a few hundred).

Nevertheless, in certain cases it makes sense to estimate p, and f,(.) from the

data also, which is the subject of the next section.

3.2. Empirical null hypthesis

Under standard FDR approach from Section 2.2, the null density f£,(.) is pre-

specified as N(O,Jg =1)) while the ratio m,/m (equivalent of p,) is estimated
from the data. Efron (2003, 2004, 2006C, D) introduced the concept of “empirical

null” where f,(z) is approximated by N(d,, 07) and the parameters

Do, Oy> O'O2 are estimated from the data also.

One may ask why not specify f,(z) a priori, e.g. f,(z) ~N(0,1) (“theoretical
null”’). To understand that, note that such f,(z) is based on Assumptions 1 and
2 from Section 2.2, i.e. if the null p-values are i.i.d. U[0,1] then the corresponding
z-scores are i.i.d. N(0,1). As underlined in Section 2.2, either of these two

assumptions can be violated. If the null p-values are not marginally U(0,1)
because of model (2.1.3) misspecification, the corresponding z-scores will not

behave like i.i.d. N(0,1) even if they are independent. In that case (under

independence) we can see that by making o,a free parameter in (3.1.5), the
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model accounts for the case when the marginal distribution of null z-scores is

N(0,0;)instead of N(0,1).

On the other hand, if the null p-values are marginally uniform (model (2.1.3) is
well specified) but dependent, the corresponding z-scores will not behave like

i.i.d. N(0,1) either. In practice, both of these forces are likely to be at work and, as
a result, the histogram of null z-scores can be quite different from that of N(0,1)

distribution.

Efron (2006D) provides an explicit example of how the correlation structure can

affect the inference. Suppose that z’s are marginally N(0,1) , that is, all z's are

null. Each pair (z,,z,) is bivariate normal with a distinct correlation coefficient p,

drawn randomly from a certain normal distribution N(0,7”). Further, let 4 be a
single independent realization (called “dispersion variate”) from N(0,7°). It can
be shown that the ensemble of all z-values will behave closely to an ensemble of

i.i.d. N(0,00) where o’ =1+~/24 . The positive realizations of 4 produce o7 >1

(“overdispersion”) and the negative realizations of 4 produce o, <1

(“underdispersion”).

On the other hand, the ensemble of i.i.d. N(O,oﬁ) can be seen as a family of
independent z-values coming from a misspecified performance evaluation model
that produces null z's that are marginally N(0,0}f) instead of N(0,1). The result
above implies that such z's can be treated as marginally N(0,1) and dependent

with the correlation density p~ N(0, 7°).

Efron (2006C) showed that, in this example, not only the point estimate of fdr(z)

but also its estimated standard error, s.e.(faAfr(z)), are conditioned on the ancillary
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statistic A, and, in that sense, are conditioned on the dependence structure of
z's. Likewise, the standard errors of p,,d,,6, are also conditioned on the

dependence structure.

In this example, using the empirical null is essentially a way to adjust the
inference for the dependence structure of z's without having to model it explicitly.
In addition, the empirical null takes into account the possible misspecification of
the marginal distribution of null p-values. If there is strong evidence against the
theoretical null, the empirical null has to be considered. Note that the usage of
empirical null increases the variability of the estimates of fdr(z) and Fdr(z), and

whether or not it is worth using is a bias-variance tradeoff question.

Based on model (2.1.3), one could roughly estimate the density of p based on

the empirical distribution of pairwise correlations in the residual variance-
covariance matrix. BSW estimated the 898*898 cross-product matrix and found

the estimated 25%, 50% and 75% quantiles for p are equal to

—0.09; 0.05; 0.19, correspondingly. Since each pairwise correlation was based
on only 60 observations, the sampling error must have added some variability
(see Efron (2006D, Remark A)). For the sake of argument, suppose that the

three quantiles of true p are -0.09; 0.0; 0.09 and p is normal, which

implies p~N(0, % =0.133%).

To see how this can affect the inference, we introduce another version of (3.1.7):
Fdr (x| A)=P{z, null | z, > x, A} (3.2.1)

Thus, Fdr(x|0) corresponds to the inference made under z's being independent,

i.e. under the theoretical null. Suppose we are interested in detecting the positive

performers, so set x = 2.5. The following plot shows the ratio of Fdr(x=2.5| A) to

Fdr(x=2.5|0) as a function of A .
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Ratio of Fdr(x|A) to Fdr(x|0) forx=2.5 VS A
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Figure 3.2.1 The ratio of Fdr(x | A) to Fdr(x | 0) as a function of A

For instance, if A took on the value of 0.16 (just 1.2 standard deviations from the

mean of zero), the proportion of null z’s in the tail region {z > 2.5} is about 1.8
times as great as it is under A = 0 (theoretical null). Suppose Fdr(2.5|0) is 0.2,

then Fdr(Z.S |0.16) is 0.36. If 100 of z's fall above 2.5, 80 of them are “true

discoveries” under the theoretical null, but under A = 0.16 the number of true

discoveries is only 64.

If A =-0.16 then the proportion of null Z's in the tail region {z > 2.5} is five times
less than that number under the theoretical null. In the example above,
Fdr(2.5]-0.16) = 0.04 and 96 out of 100 z's above 2.5 are true discoveries as

opposed to only 80 under the theoretical null.
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This illustrates that even a seemingly close-to-zero range of O can substantially

bias the inference. If one chooses to use the theoretical null f;(.)=N(0,1) for

overdispersed z’s, too many null cases will be declared significant. On the other
hand, using the theoretical null for underdispersed z’s will ignore a lot of non-null

cases. Apparently, the inference has to be adjusted for the estimated value of A.

It is achieved through using the empirical null N(0,0;) where o, =1++/24. For

this example, the empirical nulls are N(0,0; =1.226) and N(0,0;, =0.774) for
A =0.16 and A = -0.16, correspondingly.

The advantage of the empirical approach can be summarized as follows: what

we really need to know to be able to perform multiple inference is not the
dependence structure per se, but the null component, p, f,(z) . When we estimate
the dependence structure explicitly, it is not immediately clear whether our
method of modeling is adequate for the purpose of multiple testing. When the
“size problem” (Section 2.2) is present, we know very little about the true

dependence structure and it is hard to verify the weak dependence /
independence assumption for test statistics. On the other hand, p,f,(z) is
described by a small number of parameters that, by construction, are of direct
relevance to our goal. Therefore, modeling p,f,(z) directly is a logical short-cut
one may choose when the data allow for that. If the number of tests is large, we
can obtain the information about p,f,(z) directly from the observed z-scores. In

that sense, the parameters of empirical null do capture the main effect relevant to

our ultimate goal, multiple inference (see Efron (2006C, D)).

Note that, as the number of tests, m, goes up, the performance of “explicit”
approach deteriorates because the “size problem” (Section 2.2) becomes more
severe. With the “empirical” approach, it is just the opposite: the larger m, the

more precise is the estimation of p,f,(z).
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While the theoretical null is always the first option to try, the abovementioned
findings of Efron suggest that it is also worth checking whether there is strong
evidence against the theoretical null. If that is the case, switching to the empirical

null can be a justifiable option.

3.3. Parameter estimation

The numerical results in this study are obtained based on the R package locfdr

which implements the fdr-based method of Efron.

Regardless of whether the empirical or theoretical null is used, the estimation of

the parameters of null component, p,f,(z), is based the “zero assumption”: it is

assumed that only the null component is supported on a certain “zero interval”

(z_; z,). The parameters of interest are estimated with either MLE or so-called

central matching (CME) (Efron (2006C)). The interval U(A4, 1) from Section 2.2
corresponds to a symmetrical zero interval: e.g., U(0.05; 1) corresponds to the
zero interval (-1.96; 1.96) . The following formula shows the relation between A
from (2.2.2), z_and Zz_:
A=D(z )+ (1-D(z,)) (3.3.1)
d(.) - standard normal cdf

For the theoretical null and a fixed zero interval, the point estimate of p, is the
same in BSW method (formula (2.2.3)) and Efron’s approach. If the empirical null

is chosen, fo(z) can be approximated by a parametric distribution, such as

symmetrical normal N(d), O'g) or skewed split-normal SN(J,,0;,03) . Fitting a

heavy-tailed null distribution may be problematic in the sense that in order to fit
the tail, one would have to expand the zero interval to the point where too many

non-null z-values are included.
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An additional restriction p, 20.9 has to hold when we use the empirical null.
Efron (2003) provides theoretical and numerical results that justify the restriction:
if p, 20.9 and the theoretical null is valid, then the MLE/CME estimates of 9,

and o, have to be very close to 0 and 1, respectively. If they are not, it implies

that the theoretical null is inadequate. If p, <0.9 then the estimates of (J,,0,)

can be significantly different from (0, 1) even when the theoretical null is valid.

Hence, if one wants to distinguish between the two types of nulls, first he has to

make sure that p, 20.9.

The choice of the zero interval itself is a bias-variance tradeoff problem: for a
large interval, the estimate of p, (and, if applicable, the parameters of the

empirical null) have low variance but a high bias since many non-null cases are

likely to fall into the wide zero interval. For a narrow zero interval, the bias is
small, but the estimates of p, and other parameters have large variance. The
value of 1 or the boundaries of (z_; z,) are the corresponding smoothing
parameters. BSW minimize MSE(p,) using A as a smoothing parameter. For a
fixed 1, MSE(p,) is calculated based on rather questionable bootstrap

technique (see Section 2.2) and we are not going to use it for this study.

Instead, consider the error of ﬁofo(z) scaled by 1/ f(z):

1 (3.3.2)
f(2)

The optimal zero interval is where the integrated MSE(Error(z))is at the

[ oS = pufo(2)]

Error(z) =

minimum, so we have to estimate the squared bias and variance. The locfdr

package does not provide a direct estimate of MSE(Error(z)) , and we are going

to use some proxies to obtain the shape of bias-variance tradeoff curve.
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First, we use the bias on the zero interval as a proxy for overall bias. On the zero

interval we have

Pofo(2)=f(2) (3.3.3)

1 PSP I A6
f(Z)[pOfO(Z) pofo(z)} 1 1(2)

The mixture density f(z) is unknown, but the expected error can be estimated

Error(z) =

by using an unbiased estimator of f(z) which is obtained in locfdr via Poisson

regression over the entire z axis. The estimator, f (z), is consistent even when z-
scores are dependent (see Efron (2004, 2005)). The locfdr package also
produces the estimates fdr(z) and Var[log( fdr(z))].

As a result, the estimate of average squared bias is:

N T (3.3.4)
Bias® =——— j (- fdr(2)) dz
z,—z_;
The error variance at point z will be
Var[Error(z)]=Var| fc;’r(z)] (3.3.5)

We are going to use the available Var[logﬁfdr(z))] instead and then get the

estimate of overall variance as:

Var, =%, Var{log( fdr(2))ldz (3.3.6)

For the theoretical null, f,(z) is not estimated. Var(f(z)) does not depend on A
and its magnitude is much larger than that of Var(p,- N(0,1)). For that reason, we

are going to use Var,(p,) instead of (3.3.6) for the theoretical null.

For the empirical null, we are using the full version (3.3.6). In that case, locfdr

]30];0 (2)

produces Var{log( fc?r(z))] where both numerator and denominator of =%~~~

(2



34

are considered random and f‘(z) can be seen as a random weight function. For
the empirical null, the numerator strongly dominates the denominator and Var, is

proportional to
(3.3.7)

[ var(p, - fy(2))dz
Because Var, and Bias? are not on the same scale, we divide each estimate by

its median over the range of the smoothing parameter to get the value of bias-

variance tradeoff, BVT;:

Var, N Bias’, (3.3.8)

BVT, = .
median, (Var,) median, (Bias”,)
BVT, is not equal to the equal to the integrated MSE(Error(z)), but it estimates

the shape of MSE curve (see Storey and Tibshirani (2001)).The optimal value of

A is determined by minimizing BVT, over the range of 4. An alternative zero

interval choice procedure based on MSE(faofo(z)) is developed in Turnbull (2007)

but the corresponding software is not publicly available.

Let us return to the example from Section 3.2 where marginally N(0,1) z-values
are correlated with the correlation density o~ N(0, 7°). In that case, if empirical

null is used, the fc;’r(z) and Var{log( fc?r(z))] are adjusted for the dependence

among z’s in the sense that both estimates are conditioned on the value of
dispersion variate 4 (Efron(2006C)). In that sense, these estimates are more
adequate than the bootstrap estimate of variance used in BSW. However, if the
theoretical null is used, the variance estimator, strictly speaking, works only
under the independent z’s which makes it akin to the bootstrap estimator of
BSW.
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Efron’s method and locfdr package do not distinguish between significant z-
values that are positive and significant z-values that are negative. For MF study,
it is necessary to make that distinction because we need to separate
outperformers from underperformers. Suppose all p-values are converted to
corresponding z-scores via (3.1.2). The structural model (3.1.3 — 3.1.5) can be
slightly modified as follows:

a~g() (3.3.9)

zla~ N(a,0,)

g(@) = pyg,(0)+ pi g (@) + p g (@)

where

py=P{a =0}, p/=Pia>0}, p; =P {a<0}

g,(a)—"zero" density equal to delta function

g, () —"positive" density with support on {& > 0}

g, () —"negative" density with support on {¢&r <0}

In terms of z-values, we have

f(2)=p,fo(2)+p fi(z) - mixture density of Z's (3.3.10)
pfi@=p i @+p S (2

where

£,(z)=N(0,07) - "zero" density of z's

fH(z)=g' *N(0,0;) - "positive" density of z's

f(z)=g *N(0,0,) - "negative" density of z's

pi+p =p, ptp =1
The locfdr package produces the estimate of p, f,(z), but its decomposition into
positive p, f,"(z) and negative p, f, (z) components is not identified. However,
note that 7, (z) is a (possibly continuous) mixture of normal densities
17 (=g (@)*N(©,67), a<0 (3.3.11)
All normal densities in the mixture have negative means. Hence, f, (z) is non-
1in

increasing for z > 0. Typically, the estimation produces fdr(z) :—p(’{?(z) =
z
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some interval (~/;/) such as (-0.4; 0.4). It implies that /(z), f (z) and f*(z)
are equal to zero on (—/;/). Hence, f(z) cannot have support for z >/ and

£7(z)=0Vz>0. Similarly, /*(z) =0 Vz <0.

Therefore, while in theory some « <0 can produce z > 0, the practical estimation

procedure implies that z > 0 can be produced only by & >0 and z < 0 can only

be produced by a<0. Then, for z > 0 we may formally define “positive” fdr as

P+ PLS(2) (3.3.12)
f(2)

but since 1, (z)=0Vz>0, fdr.(z) will be the same as fc;’r(z) produced by locfdr

Jdr (z) =

package.
Then, the value of p," is estimated as follows:

o 3.3.13
j[l— fdr(z)]dz ( )

b=t
flj(z) dz
f(z)

and similarly for p, , where integrals are computed as corresponding sums.

S sy 3

For two-component model, s.e.(p,)=s.e.(p,), but as of now we don’t have a way
to get s.e(p;) and s.e.(p;). Let us assume that
se(p)=se(p )=k and corr(p,,p;)<0 (3.3.14)
then
Var[ p,1< 2K = k> S.e.(ﬁo)/\/z (3.3.15)
Unless stated otherwise, the lower bound for K will be reported instead of

se(p’) and s.e(p,) whenever the three-component model (3.3.10) is used.
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CHAPTER 4. US MUTUAL FUND PERFORMANCE EVALUATION

4 .1. Data description and previous results

This study is focused on actively managed US equity MF. The first dataset
consists of 1911 open-end, actively managed US equity MF selected from the
CRSP mutual fund database. The monthly dataset covers 01/1993 —06/2007,
inclusive. In this dataset, MF returns are net of management expenses,
marketing fees, administration, and trading costs. The second dataset is obtained
from the first one, with the original returns converted to “pre-expense” returns
that are net of trading costs only. Because of the missing expense information,
the second dataset includes 1876 funds. In every case, each MF has at least 50

monthly observations. The Appendix describes both samples in detail.

In reality, the managers are not going to work for free, but pre-expense analysis
can still be useful. First, it is definitely an interesting theoretical question whether
skilled stock pickers exist in principle, regardless of how much it costs to employ
them. Second, if the good performers could be singled out, one could do some
further analysis to see whether they earn more than their fees. This is especially
relevant to institutional investors such as funds of funds because the MF fees for
institutional investors are understandably lower than for individual investors.
Besides, institutional investors can try to negotiate and lower the fees. Finally,
another institution such as an equity hedge fund may be interested in obtaining a
list of talented MF managers for the purpose of offering them a position. In that

case, the fees charged by the corresponding MF are irrelevant.
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The monthly factor returns (see Carhart (1997)) were obtained from the same
CRSP database. The composition of sample (except for the time span) and the
performance evaluation model correspond to BSW study that evaluates 2076 US
equity mutual funds over the period 1975-2006; there has to be a significant

overlap between the BSW sample after 1992 and the sample in this study.

The performance evaluation model is the four-factor Carhart model (2.1.3). BSW
(10/2006) and Kosowski et al. (2006) consider a large number of possible
extensions to the Carhart model that include time-dependent regression
coefficients, serial correlation in error terms, and heteroskedasticity. They also
apply time series bootstrap estimation. They report that none of these produce a
significant change in results, and in the end focus on the Carhart model where
regression coefficients are considered constant and error terms are considered
serially uncorrelated. The model is estimated through a bootstrap procedure that,
as shown in Kosowski et al. (2006), provides more adequate estimates. A similar

approach is utilized in our study.

BSW (05/2008) estimated the proportions of funds with zero, positive and
negative &, according to the model (2.1.3). For the entire period 1975-2006, they
obtained the following results based on net returns of 2076 funds and pre-

expense returns of 1836 funds:
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Table 4.1.1 Summary of Barras et al. (05/2008) results

Proportion, %
Zero Positive Negative
Pre-expense returns 85.9 (2.7) 9.6 (1.5) 4.5 (1.0)
95% ClI (80.61;91.19) | (6.66; 12.54) | (2.54;6.46)
Number of funds 1577 83 176
Net returns 75.4 (2.5) 0.6 (0.8) 24.0 (2.3)
95% ClI (70.5; 80.3) (-0.97; 2.17) | (19.49; 28.51)
Number of funds 1565 12 499

BSW also found that for both net returns and pre-expense returns, the positive
(skilled) proportion declined significantly and in a nearly monotone fashion
between 1989 and 2006. Therefore, we expect the corresponding estimates for
1993-2007 period to be less than those in Table 4.1.1.

4.2. Pre-expense returns, Theoretical null

After the estimation of the Carhart model, the obtained p-values are converted to
corresponding z-scores via (3.1.2). The next step is to estimate the structural
model (3.3.9)-(3.3.10).

As mentioned in Section 2.2, BSW employ the theoretical null U(0,1) for two-
sided null p-values (2.1.5). It is equivalent to N(0,0; =1)for null z-scores (3.1.2).

It is also possible to use the theoretical null in locfdr package which we will do

first.

Let us start with pre-expense «'s obtained from 1876 funds. Figure 4.2.1 shows
the histogram of z-scores (y axis shows the counts of z-scores in each of 90

bins), the Poisson regression estimate of mixture density, f(z), (green curve)
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and the estimated null component, p,-N(0,1), (blue dashed curve). The estimate

D, is equal to 0.8942 or 89.42%.
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Figure 4.2.1 Estimated mixture density (green) and its null component (blue
dashed) for pre-expense returns and theoretical null

The pink dashes in Figure 4.2.1 are so-called “thinned counts” that are equal to

observed z counts times the estimated non-null componentfalfl(z).



41

Table 4.2.1 summarizes the findings:

Table 4.2.1 Performance evaluation summary for pre-expense returns and
theoretical null

p0, % p1+, % p1-, %
89.42 (0.75) | 6.30 (0.53) | 4.28 (0.53)
95% CI (87.95; 90.89) | (5.26; 7.33) | (3.24; 5.31)
Number of funds 1678 118 80
Zero interval (-1.5; 1.5)
Lambda 0.1336

The optimal zero interval (-1.5; 1.5) corresponds to using 4 =0.1336 in (2.2.3).
It means that all z-values in (-1.5; 1.5) are considered to be i.i.d. from the
theoretical null distribution N(O, 1). Equivalently, all two-sided p-values greater
than 0.1336 are considered to be i.i.d. from U(0, 1).

We see that the confidence intervals for p,, p,’, p; in Table 4.2.1 have a lot of
intersection with corresponding intervals in Table 4.1.1, even though the
bootstrap procedure of BSW is dropped (Section 3.3). Secondly, the precision

became considerably greater: in Table 4.1.1, the s.e.(p,) is 2.7% whereas in

Table 4.2.1 it is 0.75% (smaller by a factor of 3.6), which can make a practical

difference because the point estimate of p, is not very large. The estimate of

positive proportion drops from 9.6% in Table 4.1.1 to 6.3% in Table 4.2.1,
possibly because of historical deterioration of MF performance mentioned in
Section 4.1. Still, the proportion of positive performers is both practically and

statistically significant.

The results of Table 4.2.1 suggest that some 118 money managers out of 1876
are outperforming on pre-expense basis. Unfortunately, knowing that some 118

funds are worth looking into is not the same as knowing those 118 skilled funds



42

by name. In order to single them out and, at the same time, avoid the useless
false discoveries, one can try to select only the funds that fall in the bins where
fdr(z) is small, e.g. under 0.2 (see Efron (2006C)). The yellow triangles on
Figure 4.2.1 mark these cutoffs. The funds to the right of the right triangle can be
identified as skilled (outperforming) and the funds to the left of the left triangle
can be identified as unskilled (underperforming). From the distribution of the
thinned counts it becomes immediately clear that the majority of skilled and
unskilled funds fall in between the cutoffs and therefore cannot be singled out. In

other words, the study appears underpowered.

When the skilled/unskilled funds are identified based on the right/left z-value

cutoffs like above, it is useful to know the tail false discovery rates:

FdrRight(z)=P{case iisnull |z, 2z} = E [ fdr(t)|t2z]  (4.2.1)
FdrLeft(z)=P{caseiis null | z; <z} =E [ fdr(¢)| 1< z]
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Estimated fdr, FdrLeft, FdrRight

fdr(z)

1.0

04

0.0

Figure 4.2.2 Estimated fdr (black), FdrLeft (red), FdrRight (green) for
pre-expense returns and theoretical null

Figure 4.2.2 shows the estimates of fdr, FdrRight, and FdrLeft . For instance,
Table 4.2.2 shows that fdr is under 0.2 to the right of z = 2.95. If we say that all
funds with z-scores over 2.95 are outperforming, we will get
FdrRight(2.95)=11.85% of false discoveries. Likewise, declaring all funds with
z<-3.28 underperforming will produce FdrLeft(-3.28)=13.56% of false discoveries.



Table 4.2.2 Power statistics for pre-expense returns and theoretical null
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Efdr EfdrRight EfdrLeft
0.56 0.5 0.64
fdr=0.2 FdrLeft(-3.28) FdrRight (2.95)
cutoffs
(-3.28; 2.95) 0.1356 0.1185

Proportion of
Identifiable
performers based on
fdr = 0.2 cutoff

funds

Positive and negative Positive only Negative only
11.04% 14.94% 5.62%
Number of 22 out of 198 18 out of 118 4 out of 80

A high power means that fdr(z) is small on the support of f,(z), which can be

described by an overall (post hoc) power measure:

j fdr(z) f.(2)dz (4.2.2)
Efdr = =E_ [fd
fdr J o Lfdr(2)]
It can be adapted to measure the power in the left and right tails as follows:
= (4.2.3)
[ fdr(2)£,(2)dz
EfdrRight = *— =E,[fdr(z)|z>0]
[ £1(z)az
[ far(2) f(2)dz
EfdrLeft = =——; =E [fdr(z)|z<0]
[ £(z)a

If a study has a good power, Efdr should be small, say, 0.2. Table 4.2.2 shows
that, although there is more power in identifying the outperformers
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(EfdrRight=0.5) than in identifying the underperformers (EfdrLeft = 0.64), the
study is still very underpowered.

The lower part of Table 4.2.2 shows what such high Efdr values imply in practice.
Suppose that we wish to identify the outperforming (underperforming) funds
based on fdr = 0.2 right (left) cutoffs. Overall, we will be able to identity just
11.04% of “non-zero” (positive and negative combined) performers, which
amounts to 22 funds out of 198. Focusing just on good performers, we can
identify 14.94% of them, i.e. only 18 funds out of total 118 in the population.
Given that we are willing to tolerate a sizable 11.85% of false discoveries, our
ability to pick winners appears very limited. As for picking losers, it is even worse:
we tolerate 13.56% of false discoveries and still are able to identify only 5.62% of
negative performers, i.e. only 4 funds out of 80 underperformers in the

population.

The only way to increase the proportion of identifiable performers for this sample
is to try to tolerate a higher percentage of false discoveries, i.e. to move the left

and right cutoffs closer to zero.
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Table 4.2.3 Identified underperformers and false discoveries vs. FdrLeft for
pre-expense returns and theoretical null

FdrLeft Proportion of Number of Number of
identified identified false
underperformers, | underperformers | discoveries
% (rounded) (rounded)
0.1356 5.62 4 out of 80 <1
0.2 12.5 10 out of 80 2
0.3 23 18 out of 80 8
0.4 36 30 out of 80 19
0.5 51 41 out of 80 41
0.6 68 54 out of 80 82
0.7 86 67 out of 80 161
0.8 100 80 out of 80 320

Table 4.2.4 Identified outperformers and false discoveries vs. FdrRight for
pre-expense returns and theoretical null

FdrRight | Proportion of Number of Number of
identified identified false
outperformers, | outperformers | discoveries
% (rounded) (rounded)
0.1185 14.94 18 out of 118 2
0.2 29 34 out of 118 9
0.3 47 55 out of 118 24
0.4 65 78 out of 118 51
0.5 83 98 out of 118 98
0.6 95 112 out of 118 168
0.7 100 118 out of 118 275

Tables 4.2.3 and 4.2.4 describe the corresponding tradeoff. For instance, to

select about 50% (41 funds) out of all 80 underperformers one has to tolerate

FdrLeft of 0.5. That means that getting this many underperformers is possible

only in conjunction with just as many “zero” performers. For outperformers, the

situation is better but not by much: to select 50% (59 funds) out of all 118

outperformers, one has to tolerate FdrRight of about 0.32 meaning that 28

useless funds (“zero” performers) have to be selected also: 28/(59 + 28)=0.32.
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To obtain 90% (106 funds) of outperformers, one has to include about 135 “zero”

performers that are not going to be distinguishable from outperformers.

Suppose that a fund of MF funds wants to construct an outperforming portfolio.
After the expenses are deducted, all selected “zero” performers inevitably turn
into underperformers and many outperformers turn into zero or even negative
performers. Unless there remain some very strong performers who can make up
for the rest, it is reasonable to require FdrRight be well under 50%, say, 20% at
most. This corresponds to a portfolio of size under 41 (33 skilled and 8 unskilled
funds for FdrRight = 0.2, with right z cutoff equal to 2.608). Further, some of
these 41 funds may have to be dropped because of investor-specific restrictions
(compliance, diversification, risk management, etc). This suggests that one’s

ability to construct an outperforming portfolio of MF is fairly restricted.

The second goal of pre-expense analysis, identification of individual talents, is
hard to achieve also: e.g. the list of “top 87" performers (87 = 59 + 28) will have
28 indistinguishable zero performers, which won’t make it very useful. The list of
top 41 performers will have some 8 zero performers in it. The latter may be
acceptable to someone who seeks to hire just one or two talented money
managers, but still this warns one against the sizable amount of useless entries

inevitably included in all kinds of “top performers” lists.

An interesting question is whether one could improve the situation by increasing
the sample size and, thus, increasing the power. Here, increasing the sample

size means increasing T in (2.1.3), e.g. the number of observations per fund. We

are going to assume that the standard error of ¢, in (2.1.3) is proportional to

1/JT and that the parameters such as p,, p,,p, are fixed at their point

estimates and only the number of observations per each fund is multiplied by a

factor greater than one.
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The current sample is 14 2 years long with an average of 10 % years of
observations per fund; we can loosely think of this as having 10 % years of data

for each fund in the sample.

Efdr, EfdrRight, EfdrLeft VS Sample Size
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Figure 4.2.3 EfdrLeft (red), EfdrRight (green), Efdr (blue) vs. number of
observations per fund (in years) for pre-expense returns and theoretical null

Figure 4.2.3 (obtained from locfdr) shows the increase in power vs. average

sample size. For instance, if the current sample were doubled (to about 20 years
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per fund on average) EfdrRight would decrease from 0.5 to 0.3. Having 32 years

of data for each fund would decrease EfdrRight to a desirably low level of 0.2.

Proportion of identified under/overperformers for FdrRight=FdrLeft=0.2, VS Sample Size
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Figure 4.2.4 Proportion of identified outperformers (green), underperformers
(red) vs. number of observations per fund (in years) for pre-expense returns and
theoretical null. FdrRight and FdrLeft are fixed at 0.2

Figure 4.2.4 reflects our ability to identify more of the present
over/underperformers thanks to a larger sample size given that FdrLeft and
FdrRight are both fixed at 0.2. Roughly doubling the sample (from 10 % to 20
years per each fund) will help us to identify about 76% (90 out of 118) of
outperformers as opposed to 28% (33 out of 118) for the original sample.
Having 32 years of observations for each fund could help identify 90% of

outperformers. For underperformers the power is much worse: even with 40
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years per each fund only about 81% (65 out of 80) of underperformers are
identified.

Unfortunately, extending the sample back (e.g., BSW sample with 32-year span)
can increase the number of funds but is not likely to produce many more
observations per fund. For this study, the span is 14 % years with the mean of
10 % years per fund and the standard error for the mean less than 1 month.
Although 10% of the funds span the entire 14 V2 years, it is still unlikely to obtain
a dataset with, say, more than 15 years of observations per fund on average,
regardless of how far back it is extended. Therefore, power statistics obtained
when there are 15 years of observations for each fund can be considered the
upper bounds for the power. For the current dataset, having 15 years of data per
each fund will not drive Efdr, EfdrRight and EfdrLeft much closer to 0.2 and only
58% (68 out of 118) outperformers will be identified with FdrRight = 0.2.

These findings suggest that unsatisfactory power is inherent to both the current
and BSW study despite a much larger time span of the latter. It appears to be an
issue to consider for any MF study that is based on monthly data and a similar

multifactor performance evaluation model.

In addition, a long-living MF is likely to be managed by a few successive portfolio
managers and, practically speaking, there are reservations about whether the 10-

15 year-old data are relevant (unless the study is purely for historical purposes).
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4 3. Pre-expense returns, Empirical null

All the inference in Section 4.2 was based on the theoretical null assumption.

Therefore, there is no surprise that the obtained confidence intervals for
D> Py » P, Were consistent with those of BSW. Given that the 95% confidence
interval for p, in Table 4.2.1 is (87.95; 90.89), it is possible to assume that

P, 2 0.9 in order to check whether the theoretical null N(0, 1) is adequate for the

data.

We are going to use the same procedure as above but assume that the null
distribution is £,(.) ~ N(J,,0; ) . If the theoretical null is appropriate, the empirical

parameters should not be significantly different from the corresponding

theoretical ones.
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Pre-expense returns, empirical null
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Figure 4.3.1 Estimated mixture density (green) and its null component (blue
dashed) for pre-expense returns and empirical null

Figure 4.3.1 shows the fitted empirical null component ﬁofo(z) (blue dashed

curve) and the estimated mixture density (green curve, the same as on Figure
4.2.1).
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Table 4.3.1 Performance evaluation summary and relevant statistics for
pre-expense returns and empirical null

p0, % p1+, % p1-, %
98.11 (0.99) 1.85(0.99) 0.04
95% ClI (96.17; 100.05) (-0.09; 3.79)
Nufmber of 1840 35 1
unds
Zero interval Lambda EfdrRight
(-1.7;1.7) 0.0891 0.712
t-value for HO: Dispersion variate
delta0 sigma0 sigma0 = 1 P A
0.0039
(0.0353) 1.179 (0.034) 5.29 0.276

As we see from Table 4.3.1, while 9, is indeed indistinguishable from zero, o, is

significantly greater than one with the corresponding t-value of 5.29. In other

words, the z-values exhibit overdispersion which is significant, at least

statistically. Since the estimate of p, is very close to zero, the standard errors for

Doand p; are given under the assumption that p; =0.

Speaking of practical significance, one may think of such z-values as being
marginally N(0,1) and pairwise correlated with the correlation density o~ N(0, 7°)
(see Efron’s example in Section 3.2). Recall that in Section 3.2 the dispersion
variate A is defined as a single independent realization from the correlation
density. The estimate of the dispersion variate A in Table 4.3.1 is equal to 0.276.
Therefore, the overdispersion appears to be even more significant than the

preliminary guess of A = 0.16 discussed in Section 3.2. Returning to the example
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based on Fdr(x| A) from (3.2.1), if we assume that Fdr(2.5/0)=0.2, then
Fdr(2.5]0.276)=2.37%0.2=0.474 ,

It means that if 100 z’s fall above 2.5, 80 of them are true discoveries if the
theoretical null is used, but with the empirical null that number drops to about 53.
Also, note that the value of A4 in Table 4.3.1 and everywhere else is calculated
under the theoretical null and, thus, underestimates the real cutoff p-value under
overdispersion (i.e., the zero interval choice is less conservative than suggested
by 1).

Comparing Figure 4.3.1 and 4.2.1, we see that the empirical null has a much

better fit to f‘(z) in the central part of the histogram, i.e., the bias of the null

distribution is reduced. In theory, the blue dashed curve, ﬁofo(z), must always be

under the green curve, f(z). This is clearly violated on Figure 4.2.1, indicating

high bias.

Naturally, the empirical null implies higher variance, but if we compare the
measures of variance (3.3.6) and bias (3.3.4) of the theoretical and empirical
nulls on the same zero interval (-1.7; 1.7) it turns out that the empirical null
produces the variance that is 2.2 times as large and the bias that is 34.5 times as
small. Therefore, there is both practically and statistically significant evidence

against the theoretical null.

The usage of empirical null being justified, it implies that the theoretical null-

based inference overestimated the number of both skilled and unskilled funds in
the population. The 95% confidence interval for p, changes from (87.95; 90.89)

under theoretical null to (96.17; 100.05) under empirical null. The latter means

that it is possible that both underperformers and outperformers are not present
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in the population at all. The estimated number of outperformers drops from 118

to 35 and the estimated number of underperformers drops from 80 to 1.

The estimated number of outperformers, 35, is unlikely to be significant
practically. Besides, the power is extremely poor: the absence of yellow triangles
on Figure 4.3.1 shows that in all bins fdr is above 0.2, and EfdrRight is 0.712.

Table 4.3.2 Identified outperformers and false discoveries vs. FdrRight for
pre-expense returns and empirical null

Proportion of Number of Number of
identified identified false
. outperformers, | outperformers | discoveries
FdrRight P % (rF())unded) (rounded)
0.21 1 <1 out of 35 <1
0.3 7 2 out of 35 1
0.4 16 6 out of 35 4
0.5 31 11 out of 35 11
0.6 50 17 out of 35 26
0.7 72 25 out of 35 59
0.8 95 33 out of 35 133
0.9 100 35 out of 35 315

Table 4.3.2 shows that FdrRight is always greater than 0.2. In order to select

50% of outperformers (about 17 out of 35), one has to tolerate FdrRight of 0.6 by

selecting about 26 “zero performers” as well.
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EfdrRight VS Sample Size under Empirical Null
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Figure 4.3.2 EfdrRight vs. number of observations per fund (in years) for pre-
expense returns and empirical null

Figure 4.3.2 shows that it would take an unrealistic 43 years of observations per
fund to obtain EfdrRight of 0.2. For 15 years of data per each fund, EfdrRight is
still 0.57, far above 0.2.
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Proportion of identified overperformers for FdrRight = 0.2, VS Sample Size under Empirical Null
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Figure 4.3.3 Proportion of identified outperformers vs. number of observations
per fund (in years) for pre-expense returns and empirical null, FdrRight = 0.2

Figure 4.3.3 shows that at the level FdrRight = 0.2 outperformers are
undetectable for the current sample. It would take roughly twice as much data
(22 years per fund) to detect 50% (17 out of 35) outperformers. For 15 years per

each fund, we are able to detect only 20% (7 out of 35) of outperformers.

We see that taking overdispersion into account leads us to conclusion that
outperforming funds are both much fewer and much harder to single out than
under the theoretical null. As for outperforming portfolio formation, it is impossible
to construct one with FdrRight under 0.2. As for identifying individual talents,
consider the “top 43” list of funds that will have 26 useless entries (43 = 17 + 26)

and is of not much value. Therefore, while employing the theoretical null leaves a
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little hope for obtaining a practical gain from performance evaluation, switching to

the empirical none diminishes that hope to almost zero.

Since this study’s sample has a significant overlap with that of BSW it is very

likely that the overdispersion effect of similar magnitude was present in their

sample also. It means that BSW study overestimated the percentage of skilled

and unskilled funds in the population just as well. Under the empirical null, the

percentage of outperformers in BSW sample will probably be greater than 1.85%

in Table 4.3.1 but only because of better MF performance prior to 1993.

4 .4. Net returns, Theoretical Null

The net returns dataset produces 1911 z-values.

Frequency

80
1

40
|
[

20
|

Figure 4.4.1 Estimated mixture density (green) and its null component (blue
dashed) for net returns and theoretical null
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Figure 4.4.1 shows the histogram of z’s, the mixture density estimate (green

curve fitted to 90 bins) and the fitted theoretical null component p,- N(0,1) (blue

dashed curve).

Table 4.4.1 Performance evaluation summary and relevant statistics for
net returns and theoretical null

p0, % p1+, % p1-, %

70.91 (1.22) 0.45 28.64(1.22)

95% ClI (68.52; 73.30) (26.25; 31.03)
Number of funds 1355 9 547
Zero interval (-1.4;1.4)
Lambda 0.1615

Table 4.4.1 and Table 4.1.1 show a good correspondence between the results

for net returns. Since the estimate of p, is very close to zero, the standard errors

for p,and p, in Table 4.4.1 are given under the assumption that p, =0.

Apparently, the estimated number of outperformers (9 funds out of 1911) is not

significant neither statistically nor practically.



Table 4.4.2 Power statistics for net returns and theoretical null

60

Efdr EfdrRight EfdrLeft
0.35 0.49 0.35
fdr=10.2 .
cutoffs FdrLeft(-2.23) FdrRight ( 3.61 )
(-2.23; 3.61) 0.11 0.17
Proportion of
Identifiable performers
based on fdr=0.2
cutoffs
Positive and " Negative
. Positive only
negative only
29.17% 13.08% 29.42%
Number of 161 out of
funds 162 out of 556 1 out of 9 547

Even though EfdrLeft = 0.35 is smaller than before, it is still well above 0.2 and

the power is not too good.
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Table 4.4.3 Identified underperformers and false discoveries vs. FdrLeft for net
returns and theoretical null

Proportion of Number of Number of
identified identified false
FdrLeft | underperformers, | underperformers | discoveries
% (rounded) (rounded)
0.11 29.42 161 out of 547 20
0.2 54 295 out of 547 75
0.3 80 438 out of 547 188
0.4 96 525 out of 547 350
0.5 100 547 out of 547 547
EfdrLeft VS Sample Size
10 14 18 22 26 3n 34 38 42 A6 a0

Figure 4.4.2 EfdrLeft vs. number of observations per fund (in years) for net

Avarage number of observations per fund inyears

returns and theoretical null



62

Proportion of identified underperformers for FdrLeft = 0.2, VS Sample Size

055 08B0 065 070 075 080 085 080 085 1.00
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Average number of observations per fund in years

Figure 4.4.3 Proportion of identified underperformers vs. number of observations
per fund (in years) for net returns and theoretical null, FdrLeft = 0.2

In particular, 54% of underperformers (295 out of 547) are identified with
FdrLeft=0.2 (Table 4.4.3). Increasing the sample size to 15 years of data per
each fund reduces EfdrLeft from 0.35 to 0.29, and only the unrealistic 26 years of
data per fund brings EfdrLeft to 0.2 (Figure 4.4.2). Still, if it is possible to extend
back the sample and obtain 15 years of data per fund, it pays off because the
identifiable (under FdrLeft = 0.2) proportion of underperformers increases from
54% to 72% (394 funds out of 547). It is still far short of the 90% (492 funds out
of 547) that could be obtained for 26-year sample (Figure 4.4.3).
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Despite the low power, a high proportion of underperformers makes it much
easier to create sizable “bottom lists”: e.g., the “bottom 156" list has FdrLeft of

0.1 which corresponds to about 16 useless funds with zero performance.

4.5. Net returns, Composite Empirical Null

For net returns data, it is not possible to fit the empirical null directly as in Section
3.3 because p,, is way under 0.9. But the magnitude of overdispersion detected

in Section 4.3 is not likely to change because of subtracting the expenses so it is
safe to say that the theoretical null is inadequate for net returns just as well.
When it is taken into account, the estimated number of outperformers (9 funds)
will be reduced even more and the estimated number of underperformers will be

reduced by a few percent.

Qualitatively, the results will remain about the same: the proportion of
outperformers is both practically and statistically zero; proportion of
underperformers is both practically and statistically positive (less than 28% but
probably more than 18%); the majority of funds (well over 70%) have zero net

performance.

Note that previously we tested simple nulls:
H':00=0 VS H':01, >0 (4.5.1)
or
H:0,=0 VS H:c;, <0
The test will become a lot more powerful if we could calculate the p-value under

the composite null setting, i.e.

H':0,<0 VS H':a,>0 (4.5.2)
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Usually, the distribution of p-value under the composite null is unknown, so the

simple null with &, =0 is used instead. For this study, we can use the data itself

to estimate the composite empirical null, just like we estimated the simple
empirical null. In terms of the structural model, we have

a~g() (4.5.3)

z|la~ N(a,0,)

g(a) = p,g,(0)+ p/g/ (@)

where

po=Pia <0}, p/ =P {a>0}

g,(a)—="null" density with support on {&¢ < 0}

g, () —"positive" density with support on {& > 0}

In terms of z-values, we have

f(2)=pofo(2)+p fi(z) -mixture density of Z's (4.5.4)
where

fi(2)=g,*N(0,07) - density of null 's

fH(z)=g*N(©,0;) - density of alternative z's

potp =1

The null density f,(z) is estimated on the zero interval is (z_;z,) where z_is
some small value in the left tail, e.g. z_=-4; for z<z_, we assume that

Pofo(2)=f(2); z, serves as a smoothing parameter.

From the results in the previous section, we would expect the optimal z, to be at
least 1.4. Efron (2004) suggests a non-symmetrical parametric null, such as split-
normal £,(.) ~ SN(6,,0;,03 ), in order to avoid the influence of the left-tail z’s on
the inference in the right tail. However, fitting a split-normal distribution along with
normal N(é‘o,nj) for z =—4 and z, €[1.4; 2.2] showed that the corresponding
null components [aofo(z) are virtually identical and N(d,,7;) is quite adequate for

modeling the composite null.
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The choice of zero interval was performed as described in Section (2.3) where

the variance was calculated on the interval (median(z); +e0) and the bias on the

interval (median(z); z,) because of our interest in the right-tail inference

(median(z) is very close to 50 ). The value of 1 in this case is equal to 1-®(z,),

where ®(.) is the standard normal c.d.f.

Figure 4.5.1 shows the estimated null component p, -N(So,ﬁ(f) (blue dashed

curve).
Net returns, Composite Empirical Null
nAA TN
ATTIN
Il o
f
g ¥ /
/
[ T T T T 1
6 4 2 0 2 4

Figure 4.5.1 Estimated mixture density (green) and its null component (blue
dashed) for net returns and composite empirical null
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Table 4.5.1 Performance evaluation summary and relevant statistics for
net returns and composite empirical null

p0, % p1+, %
99.21 (0.7) 0.79 (0.7)
95% CI (97.84; 100.58) | (-0.58; 2.16)
Number of funds 1896 15
Zero interval Lambda
(-4; 1.6) 0.055
delta0 eta0 EfdrRight
-0.624 (0.033) 1.229 (0.028) 0.725

Table 4.5.1 shows that the bias-variance tradeoff is minimized on the zero
interval (-4; 1.6). Here we were supposed to expect a much larger power to
identify outperformers than for the test in Table 4.1.1. First, the mean of null

density is shifted to the left by a sizable value of 0.624. Secondly, inclusion of z-
values in [-4; -1.4] reduced the standard error of p, by 0.38% without causing
any increase in the bias in the right tail. Inclusion of z-values in [1.4; 1.6] reduced
se(p,) by another 0.14% and overall it dropped from 1.22% in Table 4.1.1 to
0.7% in Table 4.5.1.

In spite of this, the estimated number of outperformers grows from 9 to only 15

(still practically insignificant) and is not statistically different from zero. The only

explanation is that the estimated null distribution fo(z) ~ N(50,ﬁ§) reflects the fact

that o, in (4.5.4) is much greater than one. Taking that overdispersion into

account drastically reduces the final estimated number of outperformers. It

“negates” all the benefits we hoped to get from the composite empirical null.
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Table 4.5.2 Identified outperformers and false discoveries vs. FdrRight for net
returns and composite empirical null

Proportion of Number of Number of
identified identified false
. outperformers, | outperformers | discoveries
FdrRight P % (r%unded) (rounded)
0.24 1 <1 outof 15 <1
0.3 5 1 out of 15 <1
04 17 3outof 15 2
0.5 30 5 outof 15 5
0.6 47 7 out of 15 11
0.7 68 10 out of 15 24
0.8 89 13 out of 15 53
0.9 100 15 out of 15 135

Besides, EfdrRight is over 0.725 and the power is abysmal. As Table 4.5.2
shows, FdrRight is always above 0.24. The list of “top 15” performers has
FdrRight = 0.58 that amounts to about 9 useless funds in the list.

4.6. Net Performance vs. Mutual Fund Investment Objective

The 1911 funds in the sample are classified by the four investment objectives:
“Small Company Growth” (SCG), “Other Aggressive Growth” (OAG), “Growth”
(G) and “Growth and Income” (Gl). We merge the first two groups as “Aggressive
Growth” (AG) and consider only three groups. It would be interesting to look into
the net performance versus investment objective. Statistically speaking, the
findings of BSW suggest that one may be able to increase the power by using

investment objective as a control factor.

BSW compare the fund categories by running their bootstrap-based procedure
for each category separately. We can perform an fdr-based analysis which is not

going to suffer from the misspecifications of null distribution since we use the



empirical null. First, let us compare the net outperformance across categories

based on the composite empirical null from Section 4.5.

Efron (2007) proposes the following method. Suppose that all z-values are
divided into two classes, A and B. Class A corresponds to the investment
category of interest and class B corresponds to the rest of funds. Then the

mixture density and fdr can be decomposed as follows:

f(Z):”A'fA(Z)+7[B'fB(Z) (461)
7,, T, -apriori probabilities of class A and B
J.(@2)=pfi0(2)+pafy(2) -class A mixture density

Jdr (2)=pf0(2)/ f,(z2)  -class A fdr

J5(2) = PpoSfs0(2)+ Py S (2) -class B mixture density

fdry(2)= pyofuo(2)/ fo(2) - class B fdr

It can be shown that

fr,(2) = fr(z) ZnE) 4.6.2)
7,(2)

where

7 ,,(z) = P{case from class A and null | z}

7 ,(z) = P{case from class A | z}

The difference between classes A and B is tested via the null hypothesis:
H,: fdr(z)= fdr(z) (4.6.3)
If we assume that the null densities for A and B coincide for some z, then

fAO(Z):fBO(Z):”Ao(Z):%:COnSZ (4.6.4)

and

fir (2) = TP fiy ()
Do T, (2)

68
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We don’t have to run a separate fdr analysis for each group as long as the

assumption f,,(z) = f;,(z) holds in the area of interest, the right half of z-value

histogram in this case.

In that case, (4.6.4) implies that the test (4.6.3) is equivalent to testing
H,:7,(z)=const (4.6.5)
To check the assumption f,,(z) = f,,(z) , we use another property:
Jidr,(2) = firy(2) =125 7,(2) = 74(2) (4.6.6)
In particular, (4.6.6) is likely to hold for ze [-1;0.5]. If 7,(z) (which can be
estimated) is a constant in that interval, so is 7,,(z). According to (4.6.4) this can

be used as a diagnostic for the assumption f,(z) = f;,(2).

We use the same 90 bins as on Figure 4.5.1 and estimate 7,(z) via binomial

regression over the bins of interest with z>—1:
logit(z ,(z)) = B, + B, - max(0.5-z,0)+ 3, -max(z—0.5,0) + (4.6.7)
+ B, -max(z—0.5,0)*+ 3, -max(z—0.5,0)’

The interval (-1; 0.5) corresponds to 14 non-empty bins and 858 z-values and the

remaining (0.5; max(z)) corresponds to 27 non-empty bins and 357 z-values.

First, we keep the first covariate in the model and use a model selection

procedure to include any of the other three covariates that are important.

Then, if the p-value for ﬂl is small it suggests f,,(z) # f;,(2). If the p-value is
large, we can proceed under f,,(z) = f;,(2). In that case, we drop the first

covariate. Then, the p-value for { :"no covariates are important in (4.6.7)" is

used to test (4.6.5).
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For instance, for AG funds the model selection step produces the model with two
covariates corresponding to 5 and f, (Figure 4.6.1). The stars indicate the

observed proportions of AG funds in each bin and the blue curve is the fitted

probability from (4.6.7).

PiA(z) for AG (two covariates)

......................................... = IR R

Z-value

Figure 4.6.1 Probability Pi_A(z) for Aggressive Growth estimated with two
covariates

The estimated probability does not change much in (-1; 0.5) and, indeed, the p-
value for [ is 0.6997 (Table 4.6.1). After the first covariate is dropped, only the

second order term remains (Figure 4.6.2) and its p-value is 0.0079 (Table 4.6.1).



PiA(z) for AG (one covariate, 2nd order)
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Figure 4.6.2 Final model fit for probability Pi_A(z) for Aggressive Growth
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Table 4.6.1 Net outperformance vs. investment objective, composite empirical

null

Category

Number
of funds

Pvalue for
HO:
f AO(z) =
f BO(z)

P-value
for HO:
fdr_A(z) =
fdr(z)

Number of
outperformers

Proportion

G

886

0.7083

0.5606

0.79%

Gl

398

0.9698

0.0006

0%

AG

627

0.6997

0.0079

19

3%

Population

1911

n/a

n/a

15

0.79%
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We therefore conclude that fdr,.(z) # fdr(z). Column 3 of Table 4.6.1 shows that
the hypothesis f,,(z) = f;,(z) is not rejected for any category. Column 4

suggests that fdr,, (z) # fdr(z) but we fail to reject fdr,(z) = fdr(z) .

Figures 4.6.3 and 4.6.4 show the final models (with the first covariate dropped)
for Gl and G groups, correspondingly.

PiA(z) for GI

z-value
Figure 4.6.3 Final model fit for probability Pi_A(z) for Growth&Income
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PiA(z) for G
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z-value
Figure 4.6.4 Final model fit: probability Pi_A(z) for Growth

A number of logistic regression diagnostics (not reported, for details see

73

Pregibon (1981)) confirm the adequacy of all three final logistic models. It follows

from (4.6.2), (4.6.4) and (4.6.6) that fdr for class A can be estimated as

fdr,(z) = fdr(z)

7%/1(2)

# ,(0) (4.6.8)
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Combined fdr, fdr_AG, fdr_G, fdr_GlI

vl = Combined fdr and fdr_G
. _fdrAG
- fdr_Gl

z-value

Figure 4.6.5 Combined fdr and Growth fdr (blue), Aggressive Growth fdr (green),
Growth&Income fdr (red)

Figure 4.6.5 shows the curves corresponding to fdr(z) (which coincides with

fdr(2)), fdr.,(z),and fdr,(z). The first and obvious conclusion is that there are

no skilled managers in Gl group.

Using the estimate fc?rAG(z) and fc?rG(z) , we conclude that there are 19

outperformers among 627 AG funds and 7 outperformers among 886 G funds.
Therefore, while the percentage of outperformers is 0.79% in the population (15
out of 1911), it is about 3% in AG group, 0.79% in G group and 0% in Gl group
(Table 4.6.1).
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While fc?r(z) is always above 0.24, fc;’rAG(z) is under 0.2 for z = 3.56.

Unfortunately, only one AG fund has z = 3.56 and can be identified as
outperformer. Even if we raise the fdr cutoff from 0.2 to a quite aggressive level
of 0.4 (z>2.807 ), only 4 out of 19 AG outperformers are identified. Even a
relatively superior AG group is unable to produce a practically significant number

of identifiable outperformers.

The results of BSW for the same three groups (G, GI, AG) are not very
consistent. In their 05/2007 version (based on 1464 funds, 1975-2002) they claim
that Gl funds have the lowest proportion of skilled managers (0%) and the AG
funds are the best (8.0%). In BSW of 05/2008 (2076 funds, 1975-2006) they
claim that “results for the three investment-objective subgroups... are similar” but
do not provide the numbers. Instead, they look into the “short-term performance”
(see Section 4.7) to find that AG is the best (4% of outperformers) and Gl is the
worst (0%).

BSW used the theoretical null, while the results in this section are based on the
composite empirical null to provide extra power and adjust for apparent
overdispersion. Our findings are consistent with the preliminary results of BSW
and, at the same time, provide more realistic and statistically grounded picture of

the relative investment category performance.

Comparison of investment categories based on pre-expense returns is of interest
for the reasons outlined in Section 4.2 and because of additional theoretical
implications which are discussed in Section 4.8. Using the simple empirical null
from Section 4.3, we look into the distribution of both out- and underperformers

across investment objectives.
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Table 4.6.2 Pre-expense performance vs. investment objective, simple empirical

null
Number Number of Number of
Category under - Proportion out- Proportion
of funds
performers performers
G 871 0 0.00% 16 1.84%
Gl 387 1 0.26% 0 0.00%
AG 618 35 5.66% 29 4.69%
Population 1876 1 0.04% 35 1.85%

While there are statistical differences between the categories, it appears that the
only practically significant result is that AG group has a higher proportion of
outperformers and a higher proportion of underperformers than G and Gl groups.
However, the power is still low: for instance, only 2 out of 29 AG outperformers
are identified with fdr = 0.2 cutoff and 10 out of 29 are identified with fdr = 0.4
cutoff. Out of 35 AG underperformers, zero are identified with 0.2 cutoff, and only

4 are identified with 0.4 cutoff. See Section 3.8 for further discussion.

4.7. Short-term net performance

The long-term results of net MF performance are quite disappointing because the
number of outperformers is never practically significant: 12 in BSW study and the
best result for this study is 26 (7 G and 19 AG funds discovered in Section 4.6).

However, the short-term performance may be better, as suggested by BSW.

To look into short-term performance, BSW partition the data into six non-
overlapping subperiods of 5 years each, starting with 1977-1981 and ending with
2002-2006. If a fund has 60 observations on a subperiod, it is treated as a

separate “fund” with 5-year history. They thus increase the number of estimated
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alphas from 2076 to 3311 and the positive proportion goes up from 0.6 (0.8) %
(Table 4.1.1) to a statistically significant 2.4 (0.7)%, correspondingly. In BSW this
is interpreted as the evidence for superior “short-term” performance that exists
for a while and gradually disappears because the “long-run equilibrium” has to
settle. Berk and Green (2004) describe the equilibrium model, but BSW point out
that if the model holds, the negative performance has to disappear just as well,

which is not observed in reality.

All this seems to imply that investors are more capable of recognizing the good
performance (and that is the reason why it is only short-term) than the bad
performance (it is not spotted and, therefore, continues for a long time). That is
not very convincing and we will try to make a case that “superior short-term
performance” is merely a result of inadequate multiple inference technique
employed by BSW.

Note that the extended dataset of 3311 “short-term funds” is a lot more likely to
deviate from the weak dependence assumption. Many funds are included more
than once, even though on different subperiods. But the major concern is that
drastically reducing the number of observations per fund is very likely to increase
the overdispersion of z-values. In the end, the “short-term” z-values will probably
be more overdispersed than the original z-values. That alone could explain a
higher estimated percentage of outperformers and, therefore, the utilization of

empirical null is even more justified here.

Similarly, we partition our dataset into three non-overlapping 58-month
subperiods. If a fund has 50 or more observations on a subperiod, it is treated as
a separate “short-term fund”. In the end, there are 3636 of such “funds”. Applying

the theoretical null (just like in Section 4.4) gives the following results:
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Figure 4.7.1 Estimated mixture density (green) and its null component (blue
dashed) for 3636 “short-term” funds (net returns, theoretical null)

Table 4.7.1 Net performance summary and relevant statistics for 3636
“short-term” funds under theoretical null

p0, % p1+, % p1-, %
76.45 (0.74) 0.81 22.74 (0.74)
95% ClI (75.0; 77.9) (21.29; 24.19)
Number of funds 2780 29 827
Zero interval Lambda
(-1.5; 1.5) 0.1336
Efdr EfdrLeft EfdrRight
0.411 0.405 0.562
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Comparing this to the results of Section 4.4, we see that the number of

outperformers is larger (29 instead of 9) but is still practically insignificant.

The standard error of p, is reduced from 1.22% to 0.74% but p; =0.81%, which
is hardly statistically significant (standard errors in Table 4.7.1 are given under
assumption p, =0). That is, even when overdispersion is not taken into account,

there is no evidence of short-term outperformance in 1993-2007, which is
consistent with the overall deterioration of MF performance mentioned in Section
4.1.

Following the procedure of Section 4.5, we can try to empower the test via
composite empirical null. Just like in Section 4.5, it turns out that N(é}),nj) is

enough and split normal is unnecessary. The results are as follows:

150
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100
|
o
I
"
]

Frequency
T,
-

T T T T T 1
-6 -4 -2 0 2 4

WILE: delta: -0 468 sigma: 1.255 p0: 0899
CME: delta: -0 431 sigma: 1 244 p0 0 996

Figure 4.7.2 Estimated mixture density (green) and its null component (blue
dashed) for 3636 “short-term” funds (net returns, composite empirical null)
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Table 4.7.2 Net performance summary and relevant statistics for 3636
“short-term” funds under composite empirical null

p0, % p1+, %
99.63 (0.69) 0.37 (0.69)
95% CI (98.28; 100.98) | (-0.98; 1.72)
Number of funds 3623 13
Zero interval Lambda
(-3.5; 1.6) 0.055
delta0 eta0 EfdrRight
-0.467 (0.026) 1.254 (0.024) 0.877

The composite empirical null is shifted to the left by 0.467, and because of
inclusion of additional (mostly negative) z-values the standard error of p,

dropped from 0.74 to 0.69. Like in Section 3.5, this allows us to hope that more
positive cases will be identified. However, as predicted above, the overdispersion
is so severe that the estimated number of outperformers not only fails go up but
actually drops from 29 to 13 funds and is statistically insignificant, as well.
Therefore, we conclude that there is no compelling evidence of short-term
outperformance in 1993-2007.

On the other hand, BSW manage to construct an outperforming portfolio based
on minimizing its FDR. The portfolio is observed for 27 years (1980 — 2006) with
yearly recalculation of FDR for all funds and corresponding rebalancing. In the
end, the portfolio produced statistically significant annual alpha of 1.45% with a
p-value of 0.04, even though its average FDR was 0.415. However, the BSW
study provides compelling evidence that in 1980 — 1993 the proportion of

outperformers in the population was much higher than in 1994 — 2006, with a
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sharp and monotone decline from 1993 on. This pattern is so pronounced that it
will likely to remain valid even when overdispersion is taken into account.
Therefore, even though the decent performance of FDR-based portfolio is not
spurious, it is more of historical interest. Our study does not find any evidence to
state that the construction of outperforming MF portfolio would have been
possible in 1993-2007.

The traditional approach to form an outperforming portfolio is to include the top
(based on z-value ranking) k% of funds at each rebalancing. Without the
multiplicity adjustment, the tail FDR or Fdr are not taken into account, and the
proportion of useless funds in the portfolio is out of contol. Therefore, a multiple-
comparison-based cutoff (e.g., include all funds with Fdr < 0.2), applied at each

rebalancing, should work better.

However, any multiple inference procedure works with “input list” of z-values and
the “quality” of this list is at least as important as an appropriate multiple
inference method. In particular, in Section 3.2 it is suggested that the empirical
null-based fdr procedure “takes into account” the asset pricing model

misspecification. Suppose, for simplicity, that all z’s are independent and the only
source of overdispersion (o, >1) is the model (2.1.3) misspecification, e.g.
caused by a too small sample size T. Essentially, o; >1 tells us that there is
some extra noise in &;’s which we have to take into account by using

fo =N(0,07) instead of f, = N(0,1). Taking that into account will prevent us from

making false discoveries, but it will not make the extra noise disappear. If the
level of noise is very high, the procedure will simply declare that all or almost all

cases are null.

As a result, one cannot just rely on a multiple inference method to substantially

improve the portfolio performance. In particular, Mamaysky et al. (2007) argue
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that it is unlikely for a single performance evaluation model to be equally good for
each fund in the sample. They show that using a few competing models,
combined with backtesting, can significantly improve the performance of portfolio
of MF. Using such approach coupled with a multiple inference procedure can be

an interesting topic for future research.

4 8. Size, Power and Asset pricing model misspecification

An important issue in the asset pricing theory is that of asset pricing model
misspecification. There are a few ways to detect misspecification. For instance,
the theoretical requirement that discounted returns are unforecastable implies
that in (2.1.3) the residuals are not supposed to be serially correlated. In this
study, we say that the model is misspecified when the marginal distribution of null
z's is different from N(0O,1). This can have many causes, including the

abovementioned serial correlation.

A practical way to check for such misspecification is to see whether “naive” stock
portfolio formation strategies that presumably have a zero alpha show any
abnormal performance. For instance, introducing their “conditional” (i.e., with
time-dependent regression coefficients) multifactor model, Ferson and Schadt
(1996) show that three “naive” portfolio formation strategies produce abnormal
performance under some “unconditional” (with time-independent regression
coefficients) multifactor models. When “conditioning” is introduced, the abnormal
performance disappears which is interpreted as evidence that the unconditional

models are misspecified and the conditional models are not.

Kothari and Warner (2001) follow a similar path to investigate asset pricing model
misspecification and power. First, they make a point that, in practice, the investor
is interested in performance evaluation on a rather short time frame, from 3 to 5
years. They construct 348 “naive” stock portfolios that mimic an average MF’s

general features, such as size, number of securities, book-to-market ratio, and
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turnover. Each portfolio spans 3 years with a 1-month shift: the first portfolio is on
[01/1966; 12/1968], the second is on [02/1966; 01/1969], and so on, until 1994 (it
is similar to Fama-MacBeth procedure). As a result, the alphas are ordered
sequentially and can be analyzed as a univariate and possibly autocorrelated

stationary time series.

They find that for Carhart model the true nulls tend to get rejected too often, even
though they do not investigate whether the over-rejection is statistically
significant. Because little to no serial correlation is found in the sequential alphas,
the over-rejection (which is the same as overdispersion) can be interpreted as
evidence in favor of Carhart model misspecification. In our study, it would be
incorrect to say that the overdispersion found in Section 4.3 and elsewhere is
caused solely by the misspecification of Carhart model because we cannot offer

any evidence that our z-values are independent.

Model misspecification makes it problematic to compare the output of different
asset pricing models because the test size (type | error) gets out of control.
Kothari and Warner find that at the nominal test size of 5% the rejection rate for
Carhart model is 13% when all nulls are true and 80% when all nulls are false
(outperformance is introduced artificially). For characteristic-based (CS), model
the corresponding numbers are 3.4% and 59%. It means that Carhart model has

a greater power but its actual test size is also larger than the nominal 5%.

In such a case, Kothari and Warner conclude that the comparison between the
models is “clouded”. We would like to note that comparison can still be made if
asset pricing models are considered binary classifiers (i.e., zero- VS
outperformance) and then their overall discriminative ability can be compared via
Receiver Operating Characteristic (ROC) curve, e.g. area under ROC curve can

be a good criterion. However, that approach does not work for dependent z’s
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since, as explained in Section 3.2, the “dependence effect” and model

misspecification effect can be absolutely indistinguishable.

This study suggests an alternative approach to compare the power of different
models that can work for dependent z’s and does not require the rather artificial
“stretching out” of the portfolios in time like in Kothari and Warner. Construct a
large number of “naive” portfolios where the proportion of artificially introduced
outperformers is under 10%. Run a few competing performance evaluation
models and, like in Section 4.3, use the empirical nulls if necessary. Using the
empirical nulls adjusts for both sources of null distribution misspecification:
dependence among z’s and asset pricing model misspecification. It is not
possible to tell these two effects apart. However, we believe that utilizing the
empirical null puts the test sizes of different performance evaluation models on

the same level. For instance, if we do this with Kothari and Warner portfolios

under the Carhart model, we will get that ¢,>1, which is supposed to bring the

inflated rejection rate of 13% closer to the target of 5%. In addition, a positive and

significant estimate p, >0is likely to become indistinguishable from zero. After

that, the estimated proportions of non-null cases and the power measures (Efdr,

EfdrLeft, EfdrRight, and such like) become comparable among the models.

Moreover, it may be unnecessary to introduce another layer of approximation by
investigating artificial MF instead of real MF. For instance, if a preliminary
analysis of a MF dataset shows that the proportion of interesting cases is a lot
less than 10% (e.g., 1.85% in Section 4.3), one can artificially add some
economically significant alphas to the existing MF in the sample and re-estimate
to see how powerful the model is. The only thing we have to control is that the
percentage of non-null cases be under 10%, which is doable, since there are
enough bins with fdr = 1 that do not contain any “non-zero” performers. This
approach looks especially attractive when the performance evaluation model is

holdings-based, i.e. the exact composition of the portfolio is very relevant.
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There is one more way to test the validity of an asset pricing model, which is

probably the most traditional. A multifactor asset pricing model states that

E[R“1=B'E[f], i=1lm (4.8.1)

where E[R“] is the average return for the asset I in excess of risk-free rate,

E[f] is a p-dimensional vector of average excess factor returns.

The p-dimensional vector S is defined as the regression coefficient in
Ri=o.+p'f+€, t=1,T (4.8.2)
where R” and f, are random and observed excess returns for asset I and the

factors at time t (see Cochrane (2005)). The Carhart model (2.1.3) is an example
of (4.8.2) with p = 4 factors.

Taking expectations of both sides of (4.8.2) w.r.t time and comparing the result to
(4.8.1), we get that (4.8.1) implies that all the intercepts in (4.8.2) should be zero.
In practice, the attention is paid not to the statistical significance of this test but to

how practically significant the values of ¢, are.

Further, consider so-called cross-sectional regression:

E[R1=B"E[f]+a, i=l,m (4.8.3)
where /3 are obtained from (4.8.2) and are considered fixed covariates, a, are
interpreted as pricing errors for model (4.8.1) and E[f] is a p-dimensional vector

of estimated regression coefficients. While it depends on the intricacies of the

joint estimation of (4.8.2) and (4.8.3), one may roughly assume that the pricing

errors a, in (4.8.3) are equal to the corresponding intercepts ¢ in (4.8.2).

In MF performance context, we may say that the pricing errors are negligible
when the number of out- and underperformers (on pre-expense basis) is

insignificant. Correspondingly, our only possible concern in this study is that in
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AG group (Section 4.6) we find the total number of non-zero performers is 64 out
of 618, or 10.35%. These portfolios are not “naive” (they are actively managed
MF), but, as we will see below, that is not the point. The 64 cases consist of 35

underperformers and 29 outperformers, which means that on average, the

performance is not practically different from zero, i.e. in (4.8.3) E[a,] =0 even for

AG group.

However, given that A in (4.8.3) are covariates, the distribution of error terms, a,,
is not supposed to depend on the covariates. There is not supposed to be any

sort of pattern when we plot the residuals a; (or ¢;) against any of p components

of B. This is a common test for a multifactor asset pricing model.

In particular, Huij and Verbeek (2008) employ this test and suggest that the four

standard Carhart factors are inadequate for pricing MF. In particular, they

suggest that the pricing errors depend on the value of 4, in (2.1.3), which is the

same as the component of S corresponding to HML or “growth vs. value” factor.

Huij and Verbeek find that “growth” funds tend to have positive pricing errors
(outperform) and “value” funds have negative pricing errors (underperform) after

the “growth vs. value” factor has been already included in the model.

In our case, we have three investment objectives (G, Gl, AG) and although we do
not explicitly compute the regression coefficients 4, of these groups w.r.t. HML
factor, it is reasonable to assume that AG consists mostly of “growth” funds
(small #;), Gl mostly of “value” funds (large /.) and G is something in between.

Correspondingly, results from Section 4.6 shows that AG group has unusually

large (both positive and negative) pricing errors. That can be interpreted as

follows: the variance of a, in (4.8.3) depends on the level of #,, i.e. for growth

funds Var(a;) is much larger than for value funds.
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While these results are not consistent with those of Huij and Verbeek (who used
a very different time span and sample of MF), they resemble the mispricing
anomaly reported in a well known paper of Fama and French (1993). They found

that their 3-factor model could not properly price the stocks with the smallest
values of 4., i.e. growth stocks. Those stocks had significantly positive and

negative pricing errors. The 4-factor Carhart model (tested in a manner similar to
that of Fama and French) managed to correct that, but in this study we see that a

similar anomaly reappeared.

One possible explanation, suggested by Huij and Verbeek, is that Carhart model
uses factors constructed based on a very large subset of US stocks, which may
not reflect the stock-picking restrictions that apply to MF. Therefore, all these
findings suggest that creating more adequate benchmarks specifically for MF

may be justified.
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CHAPTER 5. SUMMARY AND CONCLUSIONS

5.1. Summary of Mutual Fund performance results

In this study, we look into the performance of about 1900 US equity mutual funds
over the period 1993-2007. MF performance evaluation problem is handled with
a state-of-the-art local false discovery rate approach combined with the utilization
of empirical null hypothesis. While trying to extend the prior BSW study, we still
see it as a reference point because it employs the theoretical null, which is a

particular case of the empirical null.

It is reassuring that despite the difference in the employed datasets, whenever
we use the theoretical null (Sections 4.2 and 4.4), our findings are consistent with
theBSW results. As predicted in Sections 2.2 and 3.2, the introduction of
empirical null is well grounded. First, we obtain compelling statistical evidence
(Section 4.3) that the theoretical null is misspecified (overdispersion) and has to
be replaced with the empirical null. The inference changes dramatically: over
10% of funds are either skilled or unskilled on pre-expense basis under the
theoretical null, but under the empirical null that proportion is not distinguishable

from zero.

The empirical Bayes method also allows us to test the net performance under the
more powerful composite null that includes both “zero” and underperformance as
opposed to the simple null of “zero” performance used in BSW and probably all
other MF studies. Since even under that powerful setting the number of
outperformers proves neither statistically nor practically significant (Section 4.5),

the evidence for the absence of outperformance in MF industry in 1993-2007 is
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substantially reinforced. We therefore believe that the outperformance of low
FDR-based portfolio in BSW study is mostly due to a better performance of MF
industry prior to 1993.

We use the local false discovery rate method to look into the net performance vs.
MF investment objective (Section 4.6). We obtain compelling statistical evidence
that “Aggressive Growth” funds have the largest number of outperformers and
“‘Growth and Income” have no outperformers, which is consistent with the
empirical findings of BSW study. Unfortunately, even the strongest “Aggressive
Growth” category fails to produce a practically significant number of identifiable

winners.

We provide evidence that BSW’s finding of “short-term superior performance” is
likely to have been an effect of overdispersion, as opposed to the presence of
true short-term winners. In any event, there is no evidence of “short-term

outperformance” in our sample (Section 4.7).

If we are interested in practical applications of MF performance evaluation, the
study has to have a high power. The detailed power analysis showed that
regardless of whether the utilized null is theoretical or empirical and whether we
are interested in picking winners or losers, our ability to do so is very limited. In
particular, the “top N performers” lists (for both pre-expense and net returns) are
likely to have a very small proportion of true outperformers. Essentially, in this
study we can only be good at composing meaningful “worst net performers” lists

thanks to a high proportion of net underperformers.

Power analysis calculations show that to obtain decent power, each fund in the
sample has to have an unrealistically long history of returns, well over 15 years.
It appears that any MF study that is based on monthly data and a similar

multifactor performance evaluation model is bound to be very underpowered.
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In Section 4.8 we suggest how we can leverage Efron’s approach to investigate
the comparative power of different performance evaluation models, which can be
an interesting subject for future research. In addition, we discover some evidence

of the misspecification of the volatility of error terms in Carhart model.

Returning to the question of performance, analysis in Section 4.5 shows that well
over 70% of funds in the sample have net return alphas that are not
distinguishable from zero. That proportion will probably remain large even after
some unconsidered fees (such as loads) are taken into account. Zero alpha
funds are of value because they essentially provide a free (on average) access to
the US equity market. For a risk-neutral investor, zero-alpha funds are superior
to index funds whose net alphas are negative, although close to zero. To
estimate the total gain, one may use the study of Elton et al. (2004) who look into
fifty-two S&P500 index funds over 1996-2001 and find that their average alpha is

minus 0.41% p.a.

One may try to take a broader view and speculate that even the sizable
proportion of underperformers (from 18% to 28%, Section 4.5) somehow adds
value, even though that value does not go to the shareholders directly. Providing
liquidity to the stock market is the most obvious contribution, but there may be
others. It is easy to dismiss the equity research performed by MF on the grounds
that one can do just about as well by indexing. But what if thousands of MF
equity researchers do a good job of preventing overtly fraudulent companies from
entering the US stock universe? If that check were not in place, it would be quite

possible that the US stock market would be far less efficient than it is.
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5.2. Possible applications outside Mutual Fund industry

The method of Efron can be also applied to model selection. In particular,
consider such model selection criterion as AIC:

AIC = 2k — 2In (L) (5.2.1)
where k is the number of parameters in the model and L is the maximized value
of likelihood function. AIC and similar criteria are routinely assumed to be
deterministic, whereas in fact they are not. It may be the case that, after
examining a large number of models, the “best AIC” model is just “lucky”. This
idea was originally proposed by White(2000), but, as discussed in Section 2.2,
his direct approach of estimating the dependence structure via bootstrap is

bound to fail when the number of tests is large.

The models of interest can be fairly similar to each other (e.g., based on almost
the same set of covariates), and the assumption of mutual independence (or
weak dependence) of AlC’s is unlikely to hold. Similarly to MF case, explicit
modeling of high-dimensional dependence structure is far from straightforward.
Correspondingly, we can apply Efron’s results and gain the same benefits as we

enjoyed in this study.

Another possible area of application is Statistical Arbitrage. In Avellaneda and
Lee (2008), the residuals from a multifactor model are integrated (from asset
returns to asset levels) and then fed into a simple mean-reverting model. The
goal is to select the stocks whose residuals have good mean-reverting
properties, that is, the true parameters of the estimated mean-reverting model
have to belong to a certain range. Given that the number of stocks can be quite
large, it is nothing but a large-scale multiple inference problem. Yet again, the
test statistics are certainly dependent but the dependence structure not
transparent at all. Efron’s approach can help gain an edge here, which may be

an interesting subject for future research.
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The dataset consists of monthly net return data obtained from the Center for
Research in Security Prices (CRSP) MF database between January 1993 and
June 2007 (i.e. 174 monthly observations for a fund that was open throughout
that period). The sample was drawn before the CRSP MF database was re-

engineered on April 21, 2008.

The term “net returns” means that these returns are adjusted for management
expenses, marketing fees (a.k.a. 12b-1), administration costs and trading costs.
Management expenses, marketing fees and administration costs comprise the

fund’s expense ratio (ER).

Besides, there exist other expenses such as load fees. Because they are not
taken into account in net returns, the performance estimate based on net returns

is actually an upper bound on what the individual investor can expect.

CRSP MF database consists of all open-ended US mutual funds, but in
extracting the target sample of actively managed US domestic equity funds the
following two problems had to be solved: 1) identifying the fund’s investment
objective; 2) if a fund consists of a few shareclasses, aggregating the returns
across shareclasses to produce a single time series of returns. In the CRSP
MFLINKS database, which is essentially a merger of abovementioned CRSP MF
and so-called Thomson/CDA database, both problems can be solved easily and
CRSP MFLINKS was the one used in BSW study. Unfortunately, it is very
expensive and therefore this research relies on CRSP MF database.

To solve the investment objective problem, the following algorithm (similar to that

of Pastor(2002)) was implemented: according to two investment objective codes,
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Strategic Insight Objective (“sp_obj_cd”) and ICDI Objective (“icdi_obj_cd”) the

funds of interest were selected and placed into subcategories as follows:

Table A.1 Net returns data for 1911 mutual funds

Number of

Assigned subcategory | sp obj cd |icdi obj cd funds

Small company growth SCG n/a 463
(SCG)

Other aggressive growth AGG AG, AGG 164
(OAG)

Growth (G) GRO, GMC LG 886

Growth and Income (Gl) GRI Gl 398

Total 1911

The assignment is performed in top-to-bottom priority, e.g. if a fund has
sp_obj_cd = AGG and icdi_obj_cd = LG then it is assigned to OAG category. The
categories were assessed yearly and the overall fund objective was determined

by the majority.

The following funds were implicitly (via Pastor’'s method) or explicitly (using some
other indicators from CRSP MF) excluded from the sample:

- International funds

- Money market funds

- Bond funds

- Balanced funds

- Flexible funds

- Funds of funds

- Income funds

- Index funds

- Sector stocks (oil, precious metals, etc) funds
- Preferred stock funds
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- Funds with no available objective

- Funds with no available name

- Funds with zero or not available expense ratio

- Funds with zero or not available turnover

- Finds with average yearly TNA less than $5M
To solve the multiple shareclass problem, a separate algorithm was developed
based on the available shareclass code (“icdi”), date (to account for possible
renaming) and shareclass name. The goal was to obtain a portfolio code to
identify the shareclasses belonging to the same MF. Because for the period of
2003-2007 the true portfolio code (“port_code”) was available, it was possible to
test the algorithm on a large sample of 29471 shareclass-years and only 51 of
them (0.17%) were assigned an incorrect portfolio code. Since for the entire
1993-2007 sample the portfolio code had to be calculated only for 1993-2002,

the overall error rate is probably less than 0.17%.

If a MF return is missing, the next non-missing return is discarded since it
corresponds to the cumulative return over the entire missed period (CRSP
convention). After that, the fund monthly net return was computed by weighting
the net return of each shareclass by its monthly total net asset value (“mtna”).
Each fund was required to have at least 50 (not necessarily consecutive) monthly

returns.

The pre-expense MF data were obtained based on the sample of 1911 funds
above. For each MF, its annual expense ratio was computed as a TNA-weighted
average of expense ratios of its shareclasses. Then, for each month, 1/12 of the
annual expense ratio was added to the MF monthly net return resulting in the
return that would be obtained after trading costs but before all costs included in

the expense ratio. Funds with less than 50 monthly observations were dropped.



Table A.2 Pre-expense data returns data for 1876 mutual funds

Number of
Assigned subcategory | sp obj cd |icdi_obj cd funds
Small company growth SCG n/a 457
(SCG)
Other aggressive growth AGG AG, AGG 161
(OAG)
Growth (G) GRO, GMC LG 871
Growth and Income (Gl) GRI Gl 387
Total 1876

Because of some missing expense ratio information, the pre-expense sample
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includes 1876 funds (Table A.2). For both pre-expense and net returns data, the

average number of observations per mutual fund is about 129 (10 3/4 years).
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